ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive stars in the Cl 1813-178 Cluster. An episode of massive star formation in the W33 complex

128   0   0.0 ( 0 )
 نشر من قبل Messineo Maria
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Young massive (M >10^4 Msun) stellar clusters are a good laboratory to study the evolution of massive stars. Only a dozen of such clusters are known in the Galaxy. Here we report about a new young massive stellar cluster in the Milky Way. Near-infrared medium-resolution spectroscopy with UIST on the UKIRT telescope and NIRSPEC on the Keck telescope, and X-ray observations with the Chandra and XMM satellites, of the Cl 1813-178 cluster confirm a large number of massive stars. We detected 1 red supergiant, 2 Wolf-Rayet stars, 1 candidate luminous blue variable, 2 OIf, and 19 OB stars. Among the latter, twelve are likely supergiants, four giants, and the faintest three dwarf stars. We detected post-main sequence stars with masses between 25 and 100 Msun. A population with age of 4-4.5 Myr and a mass of ~10000 Msun can reproduce such a mixture of massive evolved stars. This massive stellar cluster is the first detection of a cluster in the W33 complex. Six supernova remnants and several other candidate clusters are found in the direction of the same complex.



قيم البحث

اقرأ أيضاً

174 - Maria Messineo 2015
Rich in HII regions, giant molecular clouds are natural laboratories to study massive stars and sequential star formation. The Galactic star forming complex W33 is located at l=~12.8deg and at a distance of 2.4 kpc, has a size of ~10 pc and a total m ass of (~0.8 - ~8.0) X 10^5 Msun. The integrated radio and IR luminosity of W33 - when combined with the direct detection of methanol masers, the protostellar object W33A, and protocluster embedded within the radio source W33 main - mark the region out as a site of vigorous ongoing star formation. In order to assess the long term star formation history, we performed an infrared spectroscopic search for massive stars, detecting for the first time fourteen early-type stars, including one WN6 star and four O4-7 stars. The distribution of spectral types suggests that this population formed during the last ~2-4 Myr, while the absence of red supergiants precludes extensive star formation at ages 6-30 Myr. This activity appears distributed throughout the region and does not appear to have yielded the dense stellar clusters that characterize other star forming complexes such as Carina and G305. Instead, we anticipate that W33 will eventually evolve into a loose stellar aggregate, with Cyg OB2 serving as a useful, albeit richer and more massive, comparator. Given recent distance estimates, and despite a remarkably similar stellar population, the rich cluster Cl 1813-178 located on the north-west edge of W33 does not appear to be physically associated with W33.
Herein, we present results from observations of the 12CO (J=1-0), 13CO (J=1-0), and 12CO (J=2-1) emission lines toward the Carina nebula complex (CNC) obtained with the Mopra and NANTEN2 telescopes. We focused on massive-star-forming regions associat ed with the CNC including the three star clusters Tr14, Tr15, and Tr16, and the isolated WR-star HD92740. We found that the molecular clouds in the CNC are separated into mainly four clouds at velocities -27, -20, -14, and -8 km/s. Their masses are 0.7x10^4Msun, 5.0x10^4 Msun, 1.6x10^4 Msun, and 0.7x10^4 Msun, respectively. Most are likely associated with the star clusters, because of their high 12CO (J=2-1)/12CO (J=1-0) intensity ratios and their correspondence to the Spitzer 8 micron distributions. In addition, these clouds show the observational signatures of cloud--cloud collisions. In particular, there is a V-shaped structure in the position--velocity diagram and a complementary spatial distribution between the -20 km/s cloud and the -14 km/s cloud. Based on these observational signatures, we propose a scenario wherein the formation of massive stars in the clusters was triggered by a collision between the two clouds. By using the path length of the collision and the assumed velocity separation, we estimate the timescale of the collision to be ~1 Myr. This is comparable to the ages of the clusters estimated in previous studies.
We investigate the possibility that multiple populations in globular clusters arise as a natural by-product of massive star-cluster formation. We use 3D radiative hydrodynamics simulations for the formation of young massive clusters to track their ch emical self-enrichment during their first 5 Myr. These clusters form embedded within filamentary Giant Molecular Clouds by a combination of gas accretion and rapid merging of protoclusters. Chemical enrichment is a dynamic process happening as the young cluster assembles, so that the original (1P) and enriched (2P) subpopulations of stars form almost simultaneously. Here we test two simple and opposite extremes for the injection of enriched material into the intracluster gas: we assume either continuous injection in a way that tracks the star formation rate; or sudden injection by a single instantaneous event. Using helium abundance as a proxy for the enrichment, we find that realistic multiple population features can be reproduced by injecting a total helium mass amounting to a few percent of the clusters total mass. The differences in individual growth histories can lead to widely differing 1P/2P outcomes. These models suggest that dual or multiple populations can emerge rapidly in massive star clusters undergoing the typical mode of star cluster formation.
The enormous radiative and mechanical luminosities of massive stars impact a vast range of scales and processes, from the reionization of the universe, to the evolution of galaxies, to the regulation of the interstellar medium, to the formation of st ar clusters, and even to the formation of planets around stars in such clusters. Two main classes of massive star formation theory are under active study, Core Accretion and Competitive Accretion. In Core Accretion, the initial conditions are self-gravitating, centrally concentrated cores that condense with a range of masses from the surrounding, fragmenting clump environment. They then undergo relatively ordered collapse via a central disk to form a single star or a small-N multiple. In this case, the pre-stellar core mass function has a similar form to the stellar initial mass function. In Competitive Accretion, the material that forms a massive star is drawn more chaotically from a wider region of the clump without passing through a phase of being in a massive, coherent core. In this case, massive star formation must proceed hand in hand with star cluster formation. If stellar densities become very high near the cluster center, then collisions between stars may also help to form the most massive stars. We review recent theoretical and observational progress towards understanding massive star formation, considering physical and chemical processes, comparisons with low and intermediate-mass stars, and connections to star cluster formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا