ﻻ يوجد ملخص باللغة العربية
Dirac-Weyl fermions are massless relativistic particles with a well-defined helicity which arise in the context of high-energy physics. Here we propose a quantum simulation of these paradigmatic fermions using multicomponent ultracold atoms in a two-dimensional square optical lattice. We find that laser-assisted spin-dependent hopping, specifically tuned to the $(2s+1)$-dimensional representations of the $mathfrak{su}$(2) Lie algebra, directly leads to a regime where the emerging massless excitations correspond to Dirac-Weyl fermions with arbitrary pseudospin $s$. We show that this platform hosts two different phases: a semimetallic phase that occurs for half-integer $s$, and a metallic phase that contains a flat zero-energy band at integer $s$. These phases host a variety of interesting effects, such as a very rich anomalous quantum Hall effect and a remarkable multirefringent Klein tunneling. In addition we show that these effects are directly related to the number of underlying Dirac-Weyl species and zero modes.
We propose a two-dimensional (2D) version of Thouless pumping that can be realized by using ultracold atoms in optical lattices. To be specific, we consider a 2D square lattice tight-binding model with an obliquely introduced superlattice. It is demo
We present an accurate ab initio tight-binding model, capable of describing the dynamics of Dirac points in tunable honeycomb optical lattices following a recent experimental realization [L. Tarruell et al., Nature 483, 302 (2012)]. Our scheme is bas
We report on the experimental implementation of a spin pump with ultracold bosonic atoms in an optical superlattice. In the limit of isolated double wells it represents a 1D dynamical version of the quantum spin Hall effect. Starting from an antiferr
In this work we present an optical lattice setup to realize a full Dirac Hamiltonian in 2+1 dimensions. We show how all possible external potentials coupled to the Dirac field can arise from perturbations of the existing couplings of the honeycomb la
We study the dynamical behaviour of ultracold fermionic atoms loaded into an optical lattice under the presence of an effective magnetic flux, induced by spin-orbit coupled laser driving. At half filling, the resulting system can emulate a variety of