ترغب بنشر مسار تعليمي؟ اضغط هنا

Abundances of PAHs in the ISM: Confronting Observations with Experimental Results

141   0   0.0 ( 0 )
 نشر من قبل Roland Gredel
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present recent UV laboratory spectra of various polycyclic aromatic hydrocarbons (PAHs) and explore the potential of these molecules as carriers of the DIBs. From a detailed comparison of gas-phase and Ne-matrix absorption spectra of anthracene, phenanthrene, pyrene, 2,3-benzofluorene, benzo[ghi]perylene, and hexabenzocoronene with new interstellar spectra, we infer upper limits in the abundance of these PAHs in the interstellar medium. Upper limits in the column densities of anthracene of $0.8 - 2.8 times 10^{12}$ cm$^{-2}$ and of pyrene and 2,3-benzofluorene ranging from $2 - 8 times 10^{12}$ cm$^{-2}$ are inferred. Upper limits in the column densities of benzo[ghi]perylene are $0.9 - 2.4 times 10^{13}$ and $10^{14}$ cm$^{-2}$ for phenanthrene. The measurements indicate fractional abundances of anthracene, pyrene, and 2,3-benzofluorene of a few times $10^{-10}$. Upper limits in the fractional abundance of benzo[ghi]perylene of a few times $10^{-9}$ and of phenanthrene of few times $10^{-8}$ are inferred. {Toward CPD $-32^circ 1734$, we found near 3584 {AA} an absorption line of OH$^+$, which was discovered in the interstellar medium only very recently. The fractional abundances of PAHs inferred here are up to two orders of magnitude lower than estimated total PAH abundances in the interstellar medium. This indicates that either neutral PAHs are not abundant in translucent molecular clouds, or that a PAH population with a large variety of molecules is present.



قيم البحث

اقرأ أيضاً

This work proposes deuteronated PAH (DPAH+ ) molecules as a potential carrier of the 4.4 and 4.65 {mu}m mid infrared emission bands that have been observationally detected towards the Orion and M17 regions. Density Functional Theory calculations have been carried out on DPAH+ molecules to see the variations in the spectral behaviour from that of a pure PAH. DPAH+ molecules show features that arise due to the stretching of the aliphatic C-D bond. Deuterated PAHs have been previously reported as carriers for such features. However, preferred conditions of ionization of PAHs in the interstellar medium (ISM) indicates the possibility of the formation of DPAH+ molecules. Comparison of band positions of DPAH+ s shows reasonable agreement with the observations. We report the effect of size of the DPAH+ molecules on band positions and intensities. This study also reports a D/H ratio ([D/H]sc ; the ratio of C-D stretch and C-H stretch bands per [D/H]num ) that is decreasing with the increasing size of DPAH+ s. It is noted that large DPAH+ molecules (no. of C atoms ~ 50) match the D/H ratio that has been estimated from observations. This ratio offers prospects to study the deuterium abundance and depletion in the ISM.
266 - David B. Henley 2010
We compare the predictions of three physical models for the origin of the hot halo gas with the observed halo X-ray emission, derived from 26 high-latitude XMM-Newton observations of the soft X-ray background between $l=120degr$ and $l=240degr$. Thes e observations were chosen from a much larger set of observations as they are expected to be the least contaminated by solar wind charge exchange emission. We characterize the halo emission in the XMM-Newton band with a single-temperature plasma model. We find that the observed halo temperature is fairly constant across the sky (~1.8e6-2.3e6 K), whereas the halo emission measure varies by an order of magnitude (~0.0005-0.006 cm^-6 pc). When we compare our observations with the model predictions, we find that most of the hot gas observed with XMM-Newton does not reside in isolated extraplanar supernova remnants -- this model predicts emission an order of magnitude too faint. A model of a supernova-driven interstellar medium, including the flow of hot gas from the disk into the halo in a galactic fountain, gives good agreement with the observed 0.4-2.0 keV surface brightness. This model overpredicts the halo X-ray temperature by a factor of ~2, but there are a several possible explanations for this discrepancy. We therefore conclude that a major (possibly dominant) contributor to the halo X-ray emission observed with XMM-Newton is a fountain of hot gas driven into the halo by disk supernovae. However, we cannot rule out the possibility that the extended hot halo of accreted material predicted by disk galaxy formation models also contributes to the emission.
Blue Luminescence (BL) was first discovered in a proto-planetary nebula, the Red Rectangle (RR) surrounding the post-AGB star HD 44179. BL has been attributed to fluorescence by small, 3-4 ringed neutral polycyclic aromatic hydrocarbon (PAH) molecule s, and was thought to be unique to the RR environment where such small molecules are actively being produced and shielded from the harsh interstellar radiation by a dense circumstellar disk. In this paper we present the BL spectrum detected in several ordinary reflection nebulae illuminated by stars having temperatures between 10,000 -- 23,000 K. All these nebulae are known to also exhibit the infrared emission features called aromatic emission features (AEFs) attributed to large PAHs. We present the spatial distribution of the BL in these nebulae. In the case of Ced~112, the BL is spatially correlated with mid-IR emission structures attributed to AEFs. These observations provide evidence for grain processing and possibly for in-situ formation of small grains and large molecules from larger aggregates. Most importantly, the detection of BL in these ordinary reflection nebulae suggests that the BL carrier is an ubiquitous component of the ISM and is not restricted to the particular environment of the RR.
65 - M. Gerin , H. Liszt , D. Neufeld 2018
The transition between atomic and molecular hydrogen is associated with important changes in the structure of interstellar clouds, and marks the beginning of interstellar chemistry. Because of the relatively simple networks controlling their abundanc es, molecular ions are usually good probes of the underlying physical conditions including for instance the fraction of gas in molecular form or the fractional ionization. In this paper we focus on three possible probes of the molecular hydrogen column density, HCO+, HOC+, and CF+. We presented high sensitivity ALMA absorption data toward a sample of compact HII regions and bright QSOs with prominent foreground absorption, in the ground state transitions of the molecular ions HCO+, HOC+, and CF+ and the neutral species HCN and HNC, and from the excited state transitions of C3H+(4-3) and 13CS(2-1). These data are compared with Herschel absorption spectra of the ground state transition of HF and p-H2O. We show that the HCO+, HOC+, and CF+ column densities are well correlated with each other. HCO+ and HOC+ are tightly correlated with p-H2O, while they exhibit a different correlation pattern with HF depending on whether the absorbing matter is located in the Galactic disk or in the central molecular zone. We report new detections of C3H+ confirming that this ion is ubiquitous in the diffuse matter, with an abundance relative to H2 of ~7E-11. We confirm that the CF+ abundance is lower than predicted by simple chemical models and propose that the rate of the main formation reaction is lower by a factor of about 3 than usually assumed. In the absence of CH or HF data, we recommend to use the ground state transitions of HCO+, CCH, and HOC+ to trace diffuse molecular hydrogen, with mean abundances relative to H2 of 3E-9, 4E-8 and 4E-11.
We derive the dense core structure and the water abundance in four massive star-forming regions which may help understand the earliest stages of massive star formation. We present Herschel-HIFI observations of the para-H2O 1_11-0_00 and 2_02-1_11 and the para-H2-18O 1_11-0_00 transitions. The envelope contribution to the line profiles is separated from contributions by outflows and foreground clouds. The envelope contribution is modelled using Monte-Carlo radiative transfer codes for dust and molecular lines (MC3D and RATRAN), with the water abundance and the turbulent velocity width as free parameters. While the outflows are mostly seen in emission in high-J lines, envelopes are seen in absorption in ground-state lines, which are almost saturated. The derived water abundances range from 5E-10 to 4E-8 in the outer envelopes. We detect cold clouds surrounding the protostar envelope, thanks to the very high quality of the Herschel-HIFI data and the unique ability of water to probe them. Several foreground clouds are also detected along the line of sight. The low H2O abundances in massive dense cores are in accordance with the expectation that high densities and low temperatures lead to freeze-out of water on dust grains. The spread in abundance values is not clearly linked to physical properties of the sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا