ترغب بنشر مسار تعليمي؟ اضغط هنا

The Origin of the Hot Gas in the Galactic Halo: Confronting Models with XMM-Newton Observations

249   0   0.0 ( 0 )
 نشر من قبل David Henley
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David B. Henley




اسأل ChatGPT حول البحث

We compare the predictions of three physical models for the origin of the hot halo gas with the observed halo X-ray emission, derived from 26 high-latitude XMM-Newton observations of the soft X-ray background between $l=120degr$ and $l=240degr$. These observations were chosen from a much larger set of observations as they are expected to be the least contaminated by solar wind charge exchange emission. We characterize the halo emission in the XMM-Newton band with a single-temperature plasma model. We find that the observed halo temperature is fairly constant across the sky (~1.8e6-2.3e6 K), whereas the halo emission measure varies by an order of magnitude (~0.0005-0.006 cm^-6 pc). When we compare our observations with the model predictions, we find that most of the hot gas observed with XMM-Newton does not reside in isolated extraplanar supernova remnants -- this model predicts emission an order of magnitude too faint. A model of a supernova-driven interstellar medium, including the flow of hot gas from the disk into the halo in a galactic fountain, gives good agreement with the observed 0.4-2.0 keV surface brightness. This model overpredicts the halo X-ray temperature by a factor of ~2, but there are a several possible explanations for this discrepancy. We therefore conclude that a major (possibly dominant) contributor to the halo X-ray emission observed with XMM-Newton is a fountain of hot gas driven into the halo by disk supernovae. However, we cannot rule out the possibility that the extended hot halo of accreted material predicted by disk galaxy formation models also contributes to the emission.



قيم البحث

اقرأ أيضاً

We test the X-ray emission predictions of galactic fountain models against XMM-Newton measurements of the emission from the Milky Ways hot halo. These measurements are from 110 sight lines, spanning the full range of Galactic longitudes. We find that a magnetohydrodynamical simulation of a supernova-driven interstellar medium, which features a flow of hot gas from the disk to the halo, reproduces the temperature but significantly underpredicts the 0.5-2.0 keV surface brightness of the halo (by two orders of magnitude, if we compare the median predicted and observed values). This is true f
We present a study of the diffuse X-ray emission from the star forming region LMC-N 57 in the Large Magellanic Cloud (LMC). We use archival XMM-Newton observations to unveil in detail the distribution of hot bubbles in this complex. X-ray emission is detected from the central superbubble (SB) DEM L 229, the supernova remnant (SNR) 0532$-$675 and the Wolf-Rayet (WR) bubble DEM L 231 around the WR star Br 48. Comparison with infrared images unveils the powerful effect of massive stars in destroying their nurseries. The distribution of the hot gas in the SNR and the SB display their maxima in regions in contact with the filamentary cold material detected by IR images. Our observations do not reveal extended X-ray emission filling DEM L 231, although several point-like sources are detected in the field of view of this WR nebula. The X-ray properties of Br 48 are consistent with a binary WN4$+$O as proposed by other authors. We modeled the X-ray emission from the SB and found that its X-ray emission can be simply explained by pressure-driven wind model, that is, there is no need to invoke the presence of a SN explosion as previously suggested. The pressure calculations of the hot gas confirms that the dynamical evolution of the SB DEM L 229 is dominated by the stellar winds from the star cluster LH 76.
250 - R. L. Shelton , 2010
This paper examines the ultraviolet and X-ray photons generated by hot gas in the Galactic thick disk or halo in the Draco region of the northern hemisphere. Our analysis uses the intensities from four ions, C IV, O VI, O VII, and O VIII, sampling te mperatures of ~100,000 to ~3,000,000 K. We measured the O VI, O VII and O VIII intensities from FUSE and XMM-Newton data and subtracted off the local contributions in order to deduce the thick disk/halo contributions. These were supplemented with published C IV intensity and O VI column density measurements. Our estimate of the thermal pressure in the O VI-rich thick disk/halo gas, p_{th}/k = 6500^{+2500}_{-2600} K cm^{-3}, suggests that the thick disk/halo is more highly pressurized than would be expected from theoretical analyses. The ratios of C IV to O VI to O VII to O VIII, intensities were compared with those predicted by theoretical models. Gas which was heated to 3,000,000 K then allowed to cool radiatively cannot produce enough C IV or O VI-generated photons per O VII or O VIII-generated photon. Producing enough C IV and O VI emission requires heating additional gas to 100,000 < T < 1,000,000 K. However, shock heating, which provides heating across this temperature range, overproduces O VI relative to the others. Obtaining the observed mix may require a combination of several processes, including some amount of shock heating, heat conduction, and mixing, as well as radiative cooling of very hot gas.
Observations of interstellar clouds that cast shadows in the soft X-ray background can be used to separate the background Galactic halo emission from the local emission due to solar wind charge exchange (SWCX) and/or the Local Bubble (LB). We present an XMM-Newton observation of a shadowing cloud, G225.60-66.40, that is sufficiently compact that the on- and off-shadow spectra can be extracted from a single field of view (unlike previous shadowing observations of the halo with CCD-resolution spectrometers, which consisted of separate on- and off-shadow pointings). We analyzed the spectra using a variety of foreground models: one representing LB emission, and two representing SWCX emission. We found that the resulting halo model parameters (temperature $T_h approx 2 times 10^6$ K, emission measure $E_h approx 4 times 10^{-3}$ cm$^{-6}$ pc) were not sensitive to the foreground model used. This is likely due to the relative faintness of the foreground emission in this observation. However, the data do favor the existence of a foreground. The halo parameters derived from this observation are in good agreement with those from previous shadowing observations, and from an XMM-Newton survey of the Galactic halo emission. This supports the conclusion that the latter results are not subject to systematic errors, and can confidently be used to test models of the halo emission.
We present measurements of the Galactic halos X-ray emission for 110 XMM-Newton sight lines, selected to minimize contamination from solar wind charge exchange emission. We detect emission from few million degree gas on ~4/5 of our sight lines. The t emperature is fairly uniform (median = 2.22e6 K, interquartile range = 0.63e6 K), while the emission measure and intrinsic 0.5--2.0 keV surface brightness vary by over an order of magnitude (~(0.4-7)e-3 cm^-6 pc and ~(0.5-7)e-12 erg cm^-2 s^-1 deg^-2, respectively, with median detections of 1.9e-3 cm^-6 pc and 1.5e-12 erg cm^-2 s^-1 deg^-2, respectively). The high-latitude sky contains a patchy distribution of few million degree gas. This gas exhibits a general increase in emission measure toward the inner Galaxy in the southern Galactic hemisphere. However, there is no tendency for our observed emission measures to decrease with increasing Galactic latitude, contrary to what is expected for a disk-like halo morphology. The measured temperatures, brightnesses, and spatial distributions of the gas can be used to place constraints on models for the dominant heating sources of the halo. We provide some discussion of such heating sources, but defer comparisons between the observations and detailed models to a later paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا