ترغب بنشر مسار تعليمي؟ اضغط هنا

Narrowband imaging of Escaping Lyman-Continuum Emission in the SSA22 Field

251   0   0.0 ( 0 )
 نشر من قبل Daniel Nestor
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of an ultradeep, narrowband imaging survey for Lyman-continuum (LyC) emission at z~3 in the SSA22a field. We employ a custom narrowband filter centered at 3640A (NB3640), which probes the LyC region for galaxies at z>3.06. We also analyze new and archival NB4980 imaging tuned to the wavelength of the Lya emission line at z=3.09, and archival broadband B, V, and R images of the non-ionizing UV continuum. Our NB3640 images contain 26 z>3.06 Lyman Break Galaxies (LBGs) as well as a set of 130 Lya emitters (LAEs), identified by their excess NB4980 flux relative to the BV continuum. Six LBGs and 28 LAEs are detected in the NB3640 image. LBGs appear to span a range of NB3640-R colors, while LAEs appear bimodal in their NB3640-R properties. We estimate average UV to LyC flux density ratios, corrected for foreground contamination and intergalactic medium absorption, finding <F_{UV}/F_{LyC}>^{LBG} = 11.3^{+10.3}_{-5.4}, which implies a LBG LyC escape fraction f_{esc}^{LyC} ~ 0.1, and <F_{UV}/F_{LyC}>^{LAE} = 2.2^{+0.9}_{-0.6}. The strikingly blue LAE flux density ratios defy interpretation in terms of standard stellar population models. Assuming <F_{UV}/F_{LyC}>^{LBG} applies down to L=0.1L*, we estimate a galaxy contribution to the intergalactic hydrogen ionization rate that is consistent with independent estimates based on the Lya forest opacity at z~3. If we assume that <F_{UV}/F_{LyC}>^{LAE} holds at the faintest luminosities, the galaxy contribution significantly exceeds that inferred from the Lya forest. Further follow-up study of these faint LAEs is crucial, given the potentially important contribution similar objects make to the process of reionization. (Abridged)



قيم البحث

اقرأ أيضاً

We present results from a survey for z~2.85 Lyman-Continuum (LyC) emission in the HS1549+1933 field and place constraints on the amount of ionizing radiation escaping from star-forming galaxies. Using a custom narrowband filter (NB3420) tuned to wave lengths just below the Lyman limit at z>=2.82, we probe the LyC spectral region of 49 Lyman break galaxies (LBGs) and 91 Lya-emitters (LAEs) spectroscopically confirmed at z>=2.82. Four LBGs and seven LAEs are detected in NB3420. Using V-band data probing the rest-frame non-ionizing UV, we observe that many NB3420-detected galaxies exhibit spatial offsets between their LyC and non-ionizing UV emission and are characterized by extremely blue NB3420-V colors, corresponding to low ratios of non-ionizing to ionizing radiation (F_UV/F_LyC) that are in tension with current stellar population synthesis models. We measure average values of F_UV/F_LyC for our LBG and LAE samples, correcting for foreground galaxy contamination and HI absorption in the IGM. We find (F_UV/F_LyC)_corr^LBG=82 +/- 45 and (F_UV/F_LyC)_corr^LAE=7.4 +/- 3.6. These flux-density ratios correspond respectively to relative LyC escape fractions of f_esc,rel^LBG=5-8% and f_esc,rel^LAE=18-49%, absolute LyC escape fractions of f_esc^LBG=1-2% and f_esc^LAE=5-15%, and a comoving LyC emissivity from star-forming galaxies of 8.8-15.0 x 10^24 ergs/s/Hz/Mpc^3. In order to study the differential properties of galaxies with and without LyC detections, we analyze narrowband Lya imaging and rest-frame near-infrared imaging, finding that while LAEs with LyC detections have lower Lya equivalent widths on average, there is no substantial difference in the rest-frame near-infrared colors of LBGs or LAEs with and without LyC detections. These preliminary results are consistent with an orientation-dependent model where LyC emission escapes through cleared paths in a patchy ISM.
Compact starburst galaxies are thought to include many or most of the galaxies from which substantial Lyman continuum emission can escape into the intergalactic medium. Li and Malkan (2018) used SDSS photometry to find a population of such starburst galaxies at z~0.5. They were discovered by their extremely strong [OIII]4959+5007 emission lines, which produce a clearly detectable excess brightness in the i bandpass, compared with surrounding filters. We therefore used the HST/COS spectrograph to observe two of the newly discovered i-band excess galaxies around their Lyman limits. One has strongly detected continuum below its Lyman limit, corresponding to a relative escape fraction of ionizing photons of 20+/-2%. The other, which is less compact in UV imaging, has a 2-sigma upper limit to its Lyman escape fraction of <5%. Before the UV spectroscopy, the existing data could not distinguish these two galaxies. Although a sample of two is hardly sufficient for statistical analysis, it shows the possibility that some fraction of these strong [OIII] emitters as a class have ionizing photons escaping. The differences might be determined by the luck of our particular viewing geometry. Obtaining the HST spectroscopy, revealed that the Lyman-continuum emitting galaxy differs in having no central absorption in its prominent Ly{alpha} emission line profile. The other target, with no escaping Lyman continuum, shows the more common double-peaked Ly{alpha} emission.
Observations of reionization-era analogs at $zsim3$ are a powerful tool for constraining reionization. Rest-ultraviolet observations are particularly useful, in which both direct and indirect tracers of ionizing-photon production and escape can be ob served. We analyse a sample of 124 $zsim3$ galaxies from the Keck Lyman Continuum Spectroscopic Survey, with sensitive spectroscopic measurements of the Lyman continuum region. We present a method of removing foreground contamination from our sample using high-resolution, multi-band Hubble Space Telescope imaging. We re-measure the global properties of the cleaned sample of 13 individually-detected Lyman continuum sources and 107 individually-undetected sources, including a sample-averaged absolute escape fraction of $f_{rm esc,abs}=0.06pm0.01$ and a sample-averaged ratio of ionizing to non-ionizing ultraviolet flux density of $<f_{900}/f_{1500}>_{rm out}=0.040pm0.006$, corrected for attenuation from the intergalactic and circumgalactic media. Based on composite spectra, we also recover a strong positive correlation between $<f_{900}/f_{1500}>_{rm out}$ and Ly$alpha$ equivalent width (W$_lambda$(Ly$alpha$)) and a negative correlation between $<f_{900}/f_{1500}>_{rm out}$ and UV luminosity. As in previous work, we interpret the relationship between $<f_{900}/f_{1500}>_{rm out}$ and W$_lambda$(Ly$alpha$) in terms of the modulation of the escape of ionizing radiation from star-forming galaxies based on the covering fraction of neutral gas. We also use a W$_lambda$(Ly$alpha$)-weighted $<f_{900}/f_{1500}>_{rm out}$ to estimate an ionizing emissivity from star-forming galaxies at $zsim3$ as $epsilon_{rm LyC}simeq5.5times10^{24}$erg s$^{-1}$ Hz$^{-1}$ Mpc$^{-3}$. This estimate, evaluated using the uncontaminated sample of this work, reaffirms that galaxies provide the majority of the ionizing background at $zsim3$ and beyond.
We present the results of a Spitzer IRAC and MIPS 24 micron study of extended Lyman-alpha clouds (or Lyman-alpha Blobs, LABs) within the SSA22 filamentary structure at z = 3.09. We detect 6/26 LABs in all IRAC filters, four of which are also detected at 24 micron, and find good correspondence with the 850 micron measurements of Geach et al. 2005. An analysis of the rest-frame ultraviolet, optical, near- and mid-infrared colors reveals that these six systems exhibit signs of nuclear activity (AGN)and/or extreme star formation. Notably, they have properties that bridge galaxies dominated by star formation (Lyman-break galaxies; LBGs) and those with AGNs (LBGs classified as QSOs). The LAB systems not detected in all four IRAC bands, on the other hand, are, as a group, consistent with pure star forming systems, similar to the majority of the LBGs within the filament. These results indicate that the galaxies within LABs do not comprise a homogeneous population, though they are also consistent with scenarios in which the gas halos are ionized through a common mechanism such as galaxy-scale winds driven by the galaxies within them, or gravitational heating of the collapsing cloud itself.
116 - Richard Bower 2004
We have used the SAURON panoramic integral field spectrograph to study the structure of the Ly-alpha emission-line halo, LAB1, surrounding the sub-millimeter galaxy SMM J221726+0013. This emission-line halo was discovered during a narrow-band imaging survey of the z=3.1 large-scale structure in the SSA22 region. Our observations trace the emission halo out to almost 100 kpc from the sub-millimeter source and identify two distinct Ly-alpha `mini-haloes around the nearby Lyman-break galaxies. The main emission region has a broad line profile, with variations in the line profile seeming chaotic and lacking evidence for a coherent velocity structure. The data also suggests that Ly-alpha emission is suppressed around the sub-mm source. Interpretation of the line structure needs care because Ly-alpha may be resonantly scattered, leading to complex radiative transfer effects, and we suggest that the suppression in this region arises because of such effects. We compare the structure of the central emission-line halo with local counter-parts, and find that the emission line halo around NGC 1275 in the Perseus cluster may be a good local analogue, although the high redshift halo is factor of ~100 more luminous and appears to have higher velocity broadening. Around the Lyman-break galaxy C15, the emission line is narrower, and a clear shear in the emission wavelength is seen. A plausible explanation for the line profile is that the emission gas is expelled from C15 in a bipolar outflow, similar to that seen in M82.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا