ترغب بنشر مسار تعليمي؟ اضغط هنا

Lyman Continuum Emission Escaping from Luminous Green Pea Galaxies at z=0.5

116   0   0.0 ( 0 )
 نشر من قبل Matthew A. Malkan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Compact starburst galaxies are thought to include many or most of the galaxies from which substantial Lyman continuum emission can escape into the intergalactic medium. Li and Malkan (2018) used SDSS photometry to find a population of such starburst galaxies at z~0.5. They were discovered by their extremely strong [OIII]4959+5007 emission lines, which produce a clearly detectable excess brightness in the i bandpass, compared with surrounding filters. We therefore used the HST/COS spectrograph to observe two of the newly discovered i-band excess galaxies around their Lyman limits. One has strongly detected continuum below its Lyman limit, corresponding to a relative escape fraction of ionizing photons of 20+/-2%. The other, which is less compact in UV imaging, has a 2-sigma upper limit to its Lyman escape fraction of <5%. Before the UV spectroscopy, the existing data could not distinguish these two galaxies. Although a sample of two is hardly sufficient for statistical analysis, it shows the possibility that some fraction of these strong [OIII] emitters as a class have ionizing photons escaping. The differences might be determined by the luck of our particular viewing geometry. Obtaining the HST spectroscopy, revealed that the Lyman-continuum emitting galaxy differs in having no central absorption in its prominent Ly{alpha} emission line profile. The other target, with no escaping Lyman continuum, shows the more common double-peaked Ly{alpha} emission.



قيم البحث

اقرأ أيضاً

We use new HST images of nine Green Pea Galaxies (GPGs) to study their resolved structure and color. The choice of filters, F555W and F850LP, together with the redshift of the galaxies ($zsim 0.25$), minimizes the contribution of the nebular [Othinsp ace{sc iii}] and H$alpha$ emission lines to the broad-band images. While these galaxies are typically very blue in color, our analysis reveals that it is only the dominant stellar clusters that are blue. Each GPG does clearly show the presence of at least one bright and compact star-forming region, but these are invariably superimposed on a more extended and lower surface brightness emission. Moreover, the colors of the star forming regions are on average bluer than those of the diffuse emission, reaching up to 0.6 magnitudes bluer. Assuming that the diffuse and compact components have constant and single burst Star Formation Histories, respectively, the observed colors imply that the diffuse components (possibly the host galaxy of the star-formation episode) have, on average, old stellar ages ($>1$Gyr), while the star-clusters are younger than 500Myrs. We also discuss the possibility that the diffuse red emission is due to a varying relative contribution of nebular continuum, rather than a different stellar population. With the available data, however, it is not possible to distinguish between these two interpretations. A substantial presence of old stars would indicate that the mechanisms that allow large escape fractions in these local galaxies may be different from those at play during the reionization epoch.
Green Peas are a class of extreme star-forming galaxies at intermediate redshifts, originally discovered via color-selection using multi-filter, wide-field survey imaging data (Cardamone et al. 2009). They are commonly thought of as being analogs of high-redshift Ly$alpha$-emitting galaxies. The defining characteristic of Green Pea galaxies is a high-excitation nebular spectrum with very large equivalent width lines, leading to the recognition that Green Pea-like galaxies can also be identified in samples of emission-line galaxies. Here we compare the properties a sample of [O III]-selected star-forming galaxies (z = 0.29-0.41) from the KPNO International Spectroscopic Survey (KISS) with the color-selected Green Peas. We find that the KISS [O III]-selected galaxies overlap with the parameter space defined by the color-selected Green Peas; the two samples appear to be drawn from the same population of objects. We compare the KISS Green Peas with the full H$alpha$-selected KISS star-forming galaxy sample (z $<$ 0.1) and find that they are extreme systems. Many appear to be young systems at their observed look-back times (3-4 Gyr), with more than 90% of their rest-frame B-band luminosity coming from the starburst population. We compute the volume density of the KISSR Green Peas at z = 0.29-0.41 and find that they are extremely rare objects. We dont see galaxies as extreme as the KISSR Green Peas in the local Universe, although we recognize several lower-luminosity systems at z $<$ 0.1.
Observations of reionization-era analogs at $zsim3$ are a powerful tool for constraining reionization. Rest-ultraviolet observations are particularly useful, in which both direct and indirect tracers of ionizing-photon production and escape can be ob served. We analyse a sample of 124 $zsim3$ galaxies from the Keck Lyman Continuum Spectroscopic Survey, with sensitive spectroscopic measurements of the Lyman continuum region. We present a method of removing foreground contamination from our sample using high-resolution, multi-band Hubble Space Telescope imaging. We re-measure the global properties of the cleaned sample of 13 individually-detected Lyman continuum sources and 107 individually-undetected sources, including a sample-averaged absolute escape fraction of $f_{rm esc,abs}=0.06pm0.01$ and a sample-averaged ratio of ionizing to non-ionizing ultraviolet flux density of $<f_{900}/f_{1500}>_{rm out}=0.040pm0.006$, corrected for attenuation from the intergalactic and circumgalactic media. Based on composite spectra, we also recover a strong positive correlation between $<f_{900}/f_{1500}>_{rm out}$ and Ly$alpha$ equivalent width (W$_lambda$(Ly$alpha$)) and a negative correlation between $<f_{900}/f_{1500}>_{rm out}$ and UV luminosity. As in previous work, we interpret the relationship between $<f_{900}/f_{1500}>_{rm out}$ and W$_lambda$(Ly$alpha$) in terms of the modulation of the escape of ionizing radiation from star-forming galaxies based on the covering fraction of neutral gas. We also use a W$_lambda$(Ly$alpha$)-weighted $<f_{900}/f_{1500}>_{rm out}$ to estimate an ionizing emissivity from star-forming galaxies at $zsim3$ as $epsilon_{rm LyC}simeq5.5times10^{24}$erg s$^{-1}$ Hz$^{-1}$ Mpc$^{-3}$. This estimate, evaluated using the uncontaminated sample of this work, reaffirms that galaxies provide the majority of the ionizing background at $zsim3$ and beyond.
We have used the Arecibo Telescope and the Green Bank Telescope to carry out a deep search for H{sc i}~21,cm emission from a large sample of Green Pea galaxies, yielding 19 detections, and 21 upper limits on the H{sc i} mass. We obtain H{sc i} masses of $rm M_{HI} approx (4-300) times 10^8 , rm M_odot$ for the detections, with a median H{sc i} mass of $approx 2.6 times 10^9 , rm M_odot$; for the non-detections, the median $3sigma$ upper limit on the H{sc i} mass is $approx 5.5 times 10^8 , rm M_odot$. These are the first estimates of the atomic gas content of Green Pea galaxies. We find that the H{sc i}-to-stellar mass ratio in Green Peas is consistent with trends identified in star-forming galaxies in the local Universe. However, the median H{sc i} depletion timescale in Green Peas is $approx 0.6$~Gyr, an order of magnitude lower than that obtained in local star-forming galaxies. This implies that Green Peas consume their atomic gas on very short timescales. A significant fraction of the Green Peas of our sample lie $gtrsim 0.6$~dex ($2sigma$) above the local $rm M_{HI} - M_B$ relation, suggesting recent gas accretion. Further, $approx 30$% of the Green Peas are more than $pm 2sigma$ deviant from this relation, suggesting possible bimodality in the Green Pea population. We obtain a low H{sc i}~21,cm detection rate in the Green Peas with the highest O32~$equiv$~[O{sc iii}]$lambda$5007/[O{sc ii}]$lambda$3727 luminosity ratios, O32~$> 10$, consistent with the high expected Lyman-continuum leakage from these galaxies.
If enough of their Lyman limit continuum escapes, star-forming galaxies could be significant contributors to the cosmic background of ionizing photons. To investigate this possibility, we obtained the first deep imaging in the far ultraviolet of elev en bright blue galaxies at intermediate redshift (z=1.1--1.4). NO Lyman continuum emission was detected. Sensitive, model-independent, upper limits of typically 2 x 10**-19 erg/sec/cm2/Ang were obtained for the ionizing flux escaping from these normal galaxies. This corresponds to lower limits on the observed ratio of 1500 to 700Ang flux of 150 up to 1000. Based on a wide range of stellar synthesis models, this suggests that less than 6%, down to less than 1%, of the available ionizing flux emitted by hot stars is escaping these galaxies. The magnitude of this spectral break at the Lyman l imit confirms that the basic premise of `Lyman break searches for galaxies at high redshift can also be applied at intermediate redshifts. This implies that the integrated contribution of galaxies to the UV cosmic background at z around 1.2 is less than 15%, and may be less than 2%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا