ﻻ يوجد ملخص باللغة العربية
We present a program for the numerical evaluation of scalar integrals and tensor form factors entering the calculation of one-loop amplitudes which supports the use of complex masses in the loop integrals. The program is built on an earlier version of the golem95 library, which performs the reduction to a certain set of basis integrals using a formalism where inverse Gram determinants can be avoided. It can be used to calculate one-loop amplitudes with arbitrary masses in an algebraic approach as well as in the context of a unitarity-inspired numerical reconstruction of the integrand.
We present a new Fortran code to calculate the scalar one-loop four-point integral with complex internal masses, based on the method of t Hooft and Veltman. The code is applicable when the external momenta fulfill a certain physical condition. In par
We construct a specific formalism for calculating the one-loop virtual corrections for standard model processes with an arbitrary number of external legs. The procedure explicitly separates the infrared and ultraviolet divergences analytically from t
Three-loop vacuum integrals are an important building block for the calculation of a wide range of three-loop corrections. Until now, only results for integrals with one and two independent mass scales are known, but in the electroweak Standard Model
We discuss briefly the first numerical implementation of the Loop-Tree Duality (LTD) method. We apply the LTD method in order to calculate ultraviolet and infrared finite multi-leg one-loop Feynman integrals. We attack scalar and tensor integrals wit
We show how to evaluate tensor one-loop integrals in momentum space avoiding the usual plague of Gram determinants. We do this by constructing combinations of $n$- and $(n-1)$-point scalar integrals that are finite in the limit of vanishing Gram dete