ﻻ يوجد ملخص باللغة العربية
We present the dependences of the properties of type Ia Supernovae (SNe Ia) on their host galaxies by analyzing the multi-band lightcurves of 118 spectroscopically confirmed SNe Ia observed by the Sloan Digital Sky Survey (SDSS) Supernova Survey and the spectra of their host galaxies. We derive the equivalent width of the rm{H}$alpha$ emission line, star formation rate, and gas-phase metallicity from the spectra and compare these with the lightcurve widths and colors of SNe Ia. In addition, we compare host properties with the deviation of the observed distance modulus corrected for lightcurve parameters from the distance modulus determined by the best fit cosmological parameters. This allows us to investigate uncorrected systematic effects in the magnitude standardization. We find that SNe Ia in host galaxies with a higher star formation rate have synthesized on average a larger $^{56}$Ni mass and show wider lightcurves. The $^{56}$Ni mass dependence on metallicity is consistent with a prediction of Timmes et al. 2003 based on nucleosynthesis. SNe Ia in metal-rich galaxies ({$log_{10}(O/H)+12>8.9$) have become 0.13 $pm$ 0.06 magnitude brighter after corrections for their lightcurve widths and colors, which corresponds to up to 6% uncertainty in the luminosity distance. We investigate whether parameters for standardizing SN Ia maximum magnitude differ among samples with different host characteristics. The coefficient of the color term is larger by 0.67 $pm$ 0.19 for SNe Ia in metal-poor hosts than those in metal-rich hosts when no color cuts are imposed.
Using a sample of nearby spiral galaxies hosting 185 supernovae (SNe) Ia, we perform a comparative analysis of the locations and light curve decline rates $(Delta m_{15})$ of normal and peculiar SNe Ia in the star formation deserts (SFDs) and beyond.
The nature of star formation and Type Ia supernovae (SNIa) in galaxies in the field and in rich galaxy clusters are contrasted by juxtaposing the build-up of heavy metals in the universe inferred from observed star formation and supernovae rate histo
The observational cosmology with distant Type Ia supernovae (SNe) as standard candles claims that the Universe is in accelerated expansion, caused by a large fraction of dark energy. In this paper we investigate the SN Ia environment, studying the im
We examine the relationship between Type Ia Supernova (SN Ia) Hubble residuals and the properties of their host galaxies using a sample of 115 SNe Ia from the Nearby Supernova Factory (SNfactory). We use host galaxy stellar masses and specific star-f
As part of an on-going effort to identify, understand and correct for astrophysics biases in the standardization of Type Ia supernovae (SNIa) for cosmology, we have statistically classified a large sample of nearby SNeIa into those located in predomi