ترغب بنشر مسار تعليمي؟ اضغط هنا

The influence of host galaxy morphology on the properties of Type Ia supernovae from the JLA compilation

57   0   0.0 ( 0 )
 نشر من قبل Maria Pruzhinskaya Victorovna
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The observational cosmology with distant Type Ia supernovae (SNe) as standard candles claims that the Universe is in accelerated expansion, caused by a large fraction of dark energy. In this paper we investigate the SN Ia environment, studying the impact of the nature of their host galaxies on the Hubble diagram fitting. The supernovae (192 SNe) used in the analysis were extracted from Joint-Light-curves-Analysis (JLA) compilation of high-redshift and nearby supernovae which is the best one to date. The analysis is based on the empirical fact that SN Ia luminosities depend on their light curve shapes and colors. We confirm that the stretch parameter of Type Ia supernovae is correlated with the host galaxy type. The supernovae with lower stretch are hosted mainly in elliptical and lenticular galaxies. No significant correlation between SN Ia colour and host morphology was found. We also examine how the luminosities of SNe Ia change depending on host galaxy morphology after stretch and colour corrections. Our results show that in old stellar populations and low dust environments, the supernovae are slightly fainter. SNe Ia in elliptical and lenticular galaxies have a higher $alpha$ (slope in luminosity-stretch) and $beta$ (slope in luminosity-colour) parameter than in spirals. However, the observed shift is at the 1-$sigma$ uncertainty level and, therefore, can not be considered as significant. We confirm that the supernova properties depend on their environment and that the incorporation of a host galaxy term into the Hubble diagram fit is expected to be crucial for future cosmological analyses.



قيم البحث

اقرأ أيضاً

We examine the relationship between Type Ia Supernova (SN Ia) Hubble residuals and the properties of their host galaxies using a sample of 115 SNe Ia from the Nearby Supernova Factory (SNfactory). We use host galaxy stellar masses and specific star-f ormation rates fitted from photometry for all hosts, as well as gas-phase metallicities for a subset of 69 star-forming (non-AGN) hosts, to show that the SN Ia Hubble residuals correlate with each of these host properties. With these data we find new evidence for a correlation between SN Ia intrinsic color and host metallicity. When we combine our data with those of other published SN Ia surveys, we find the difference between mean SN Ia brightnesses in low and high mass hosts is 0.077 +- 0.014 mag. When viewed in narrow (0.2 dex) bins of host stellar mass, the data reveal apparent plateaus of Hubble residuals at high and low host masses with a rapid transition over a short mass range (9.8 <= log(M_*/M_Sun) <= 10.4). Although metallicity has been a favored interpretation for the origin of the Hubble residual trend with host mass, we illustrate how dust in star-forming galaxies and mean SN Ia progenitor age both evolve along the galaxy mass sequence, thereby presenting equally viable explanations for some or all of the observed SN Ia host bias.
We present improved photometric measurements for the host galaxies of 206 spectroscopically confirmed type Ia supernovae discovered by the Dark Energy Survey Supernova Program (DES-SN) and used in the first DES-SN cosmological analysis. Fitting spect ral energy distributions to the $griz$ photometric measurements of the DES-SN host galaxies, we derive stellar masses and star-formation rates. For the DES-SN sample, when considering a 5D ($z$, $x_1$, $c$, $alpha$, $beta$) bias correction, we find evidence of a Hubble residual `mass step, where SNe Ia in high mass galaxies ($>10^{10} textrm{M}_{odot}$) are intrinsically more luminous (after correction) than their low mass counterparts by $gamma=0.040pm0.019$mag. This value is larger by $0.031$mag than the value found in the first DES-SN cosmological analysis. This difference is due to a combination of updated photometric measurements and improved star formation histories and is not from host-galaxy misidentification. When using a 1D (redshift-only) bias correction the inferred mass step is larger, with $gamma=0.066pm0.020$mag. The 1D-5D $gamma$ difference for DES-SN is $0.026pm0.009$mag. We show that this difference is due to a strong correlation between host galaxy stellar mass and the $x_1$ component of the 5D distance-bias correction. To better understand this effect, we include an intrinsic correlation between light-curve width and stellar mass in simulated SN Ia samples. We show that a 5D fit recovers $gamma$ with $-9$mmag bias compared to a $+2$mmag bias for a 1D fit. This difference can explain part of the discrepancy seen in the data. Improvements in modeling correlations between galaxy properties and SN is necessary to determine the implications for $gamma$ and ensure unbiased precision estimates of the dark energy equation-of-state as we enter the era of LSST.
We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory (SNfactory). Combining GALEX UV data with optical and near infrared photometry, we employ stellar populatio n synthesis techniques to measure SN Ia host galaxy stellar masses, star-formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high precision redshifts, gas-phase metallicities, and Halpha-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from SDSS for stellar masses log(M_*/M_Sun)>8.5 where the relation is well-defined. The star-formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.
(Abridged) We present new results on the Hubble diagram of distant type Ia supernovae (SNe Ia) segregated according to the type of host galaxy. This makes it possible to check earlier evidence for a cosmological constant by explicitly comparing SNe r esiding in galaxies likely to contain negligible dust with the larger sample. The cosmological parameters derived from these SNe Ia hosted by presumed dust-free early-type galaxies supports earlier claims for a cosmological constant, which we demonstrate at 5 sigma significance, and the internal extinction implied is small even for late-type systems (A_B<0.2). Thus, our data demonstrate that host galaxy extinction is unlikely to systematically dim distant SNe Ia in a manner that would produce a spurious cosmological constant. We classify the host galaxies of 39 distant SNe discovered by the Supernova Cosmology Project (SCP) using the combination of HST STIS imaging, Keck ESI spectroscopy and ground-based broad-band photometry. We compare with a low-redshift sample of 25 SNe Ia. The scatter observed in the SNe Ia Hubble diagrams correlates closely with host galaxy morphology. We find the scatter in the SNe Ia Hubble diagram is smallest for SNe occurring in early-type hosts and largest for those occurring in late-type galaxies. Moreover, SNe residing in early-type hosts appear only ~0.14+/-0.09 mag brighter in their light-curve-width-corrected luminosity than those in late-type hosts, implying only a modest amount of dust extinction even in the late-type systems.
A string of recent studies has debated the exact form and physical origin of an evolutionary trend between the peak luminosity of Type Ia supernovae (SNe Ia) and the properties of the galaxies that host them. We shed new light on the discussion by pr esenting an analysis of ~200 low-redshift SNe Ia in which we measure the separation of Hubble residuals (HR; as probes of luminosity) between two host-galaxy morphological types. We show that this separation can test the predictions made by recently proposed models, using an independently and empirically determined distribution of each morphological type in host-property space. Our results are partially consistent with the new HR--age slope, but we find significant scatter in the predictions from different galaxy catalogues. The inconsistency in age illuminates an issue in the current debate that was not obvious in the long-discussed mass models: HR--host-property models are strongly dependent on the methods employed to determine galaxy properties. While our results demonstrate the difficulty in constructing a universal model for age as a proxy for host environment, our results indeed identify evolutionary trends between mass, age, morphology, and HR values, encouraging (or requiring, if such trends are to be accounted for in cosmological studies) further investigation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا