ترغب بنشر مسار تعليمي؟ اضغط هنا

Extremal correlations of the tripartite no-signaling polytope

130   0   0.0 ( 0 )
 نشر من قبل Stefano Pironio
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The no-signaling polytope associated to a Bell scenario with three parties, two inputs, and two outputs is found to have 53856 extremal points, belonging to 46 inequivalent classes. We provide a classification of these points according to various definitions of multipartite non-locality and briefly discuss other issues like the interconversion between extremal points seen as a resource and the relation of the extremal points to Bell-type inequalities.



قيم البحث

اقرأ أيضاً

Pure states are very important in any theory since they represent states of maximal information about the system within the theory. Here, we show that no non-trivial (not local realistic) extremal states (boxes) of general no-signaling theories can b e realized within quantum theory. We then explore three interesting consequences of this fact. Firstly, since the pure states are uncorrelated from the environment, the statement forms a no-go result against the most straightforward device-independent protocol for randomness or secure key generation against general no-signaling adversaries. It also leads to the interesting question whether all non-extremal boxes allow for non-local correlations with the adversary. Secondly, in addition to the fact that new information-theoretic principles (designed to pick out the set of quantum correlations from among all non signaling ones) can in consequence be tested on arbitrary non-local vertices to check their validity, it also allows the possibility of excluding from the quantum set any box of no-signaling correlations that can be distilled to a non-local vertex. Finally, it also forms a sufficient condition to identify non-local games with no quantum winning strategy, when one can show that the game has a single unique non-signaling winning strategy. We illustrate each of these consequences with the example of generalized Popescu-Rohrlich boxes.
248 - M.P. Seevinck 2011
The no-signaling constraint on bi-partite correlations is reviewed. It is shown that in order to obtain non-trivial Bell-type inequalities that discern no-signaling correlations from more general ones, one must go beyond considering expectation value s of products of observables only. A new set of nontrivial no-signaling inequalities is derived which have a remarkably close resemblance to the CHSH inequality, yet are fundamentally different. A set of inequalities by Roy and Singh and Avis et al., which is claimed to be useful for discerning no-signaling correlations, is shown to be trivially satisfied by any correlation whatsoever. Finally, using the set of newly derived no-signaling inequalities a result with potential cryptographic consequences is proven: if different parties use identical devices, then, once they have perfect correlations at spacelike separation between dichotomic observables, they know that because of no-signaling the local marginals cannot but be completely random.
In 1981 N. Herbert proposed a gedanken experiment in order to achieve by the First Laser Amplified Superluminal Hookup (FLASH) a faster than light communication (FTL) by quantum nonlocality. The present work reports the first experimental realization of that proposal by the optical parametric amplification of a single photon belonging to an entangled EPR pair into an output field involving 5 x 10^3 photons. A thorough theoretical and experimental analysis explains in general and conclusive terms the precise reasons for the failure of the FLASH program as well as of any similar FTL proposals.
It has been recently shown, that some of the tripartite boxes admitting bilocal decomposition, lead to non-locality under wiring operation applied to two of the subsystems [R. Gallego et al. Physical Review Letters 109, 070401 (2012)]. In the followi ng, we study this phenomenon quantitatively. Basing on the known classes of boxes closed under wirings, we introduced multipartite monotones which are counterparts of bipartite ones - the non-locality cost and robustness of non-locality. We then provide analytical lower bounds on both the monotones in terms of the Maximal Non-locality which can be obtained by Wirings (MWN). We prove also upper bounds for the MWN of a given box, based on the weight of boxes signaling in a particular direction, that appear in its bilocal decomposition. We study different classes of partially local boxes and find MWN for each class, using Linear Programming. We identify also the wirings which lead to MWN and exhibit that some of them can serve as a witness of certain classes. We conclude with example of partially local boxes being analogue of quantum states that allow to distribute entanglement in separable manner.
We show that simple geometric properties of probabilistic spaces, in conjunction with no-signaling principle, lead to strong monogamies for a large class of Bell type inequalities. Additionally, using the same geometric approach, we derive a new trip artite, $d$-outcome Svetlichny-Zohren-Gill type Bell inequality and show its monogamous nature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا