ﻻ يوجد ملخص باللغة العربية
In 1981 N. Herbert proposed a gedanken experiment in order to achieve by the First Laser Amplified Superluminal Hookup (FLASH) a faster than light communication (FTL) by quantum nonlocality. The present work reports the first experimental realization of that proposal by the optical parametric amplification of a single photon belonging to an entangled EPR pair into an output field involving 5 x 10^3 photons. A thorough theoretical and experimental analysis explains in general and conclusive terms the precise reasons for the failure of the FLASH program as well as of any similar FTL proposals.
Pure states are very important in any theory since they represent states of maximal information about the system within the theory. Here, we show that no non-trivial (not local realistic) extremal states (boxes) of general no-signaling theories can b
The no-signaling polytope associated to a Bell scenario with three parties, two inputs, and two outputs is found to have 53856 extremal points, belonging to 46 inequivalent classes. We provide a classification of these points according to various def
We show that simple geometric properties of probabilistic spaces, in conjunction with no-signaling principle, lead to strong monogamies for a large class of Bell type inequalities. Additionally, using the same geometric approach, we derive a new trip
Superradiant phase transition (SPT) in thermal equilibrium, as a fundamental concept bridging the statistical physics and electrodynamics, can offer the key resources for quantum information science. Notwithstanding its fundamental and practical sign
The impossibility of superluminal communication is a fundamental principle of physics. Here we show that this principle underpins the performance of several fundamental tasks in quantum information processing and quantum metrology. In particular, we