ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental demonstration of nonlocal effects of the partial collapse measurement and reversal process

213   0   0.0 ( 0 )
 نشر من قبل Xiao-Ye Xu
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally demonstrate the nonlocal reversal of a partial-collapse quantum measurement on two-photon entangled state. Both the partial measurement and the reversal operation are implemented in linear optics with two displaced Sagnac interferometers, which are characterized by single qubit quantum process tomography. The recovered state is measured by quantum state tomography and its nonlocality is characterized by testing the Bell inequality. Our result will be helpful in quantum communication and quantum error correction.



قيم البحث

اقرأ أيضاً

Taming decoherence is essential in realizing quantum computation and quantum communication. Here we experimentally demonstrate that decoherence due to amplitude damping can be suppressed by exploiting quantum measurement reversal in which a weak meas urement and the reversing measurement are introduced before and after the decoherence channel, respectively. We have also investigated the trade-off relation between the degree of decoherence suppression and the channel transmittance.
We describe and implement a method to restore the state of a single qubit, in principle perfectly, after it has partially collapsed. The method resembles the classical Hahn spin-echo, but works on a wider class of relaxation processes, in which the q uantum state partially leaves the computational Hilbert space. It is not guaranteed to work every time, but successful outcomes are heralded. We demonstrate using a single trapped ion better performance from this recovery method than can be obtained employing projection and post-selection alone. The demonstration features a novel qubit implementation that permits both partial collapse and coherent manipulations with high fidelity.
Nonlocal measurement, or instantaneous measurement of nonlocal observables, is a considerably difficult task even for a simple form of product observable since relativistic causality prohibits interaction between spacelike separate subsystems. Follow ing a recent proposal for effectively creating the von Neumann measurement Hamiltonian of nonlocal observables [Brodutch and Cohen, Phys. Rev. Lett. 116, 070404 (2016)], here we report a proof-of-principle demonstration of nonlocally measuring a product observable using linear optics without the violation of relativistic causality. Our scheme provides a feasible approach to perform nonlocal measurements via quantum erasure with linear optics.
The duration, strength and structure of memory effects are crucial properties of physical evolution. Due to the invasive nature of quantum measurement, such properties must be defined with respect to the probing instruments employed. Here, using a ph otonic platform, we experimentally demonstrate this necessity via two paradigmatic processes: future-history correlations in the first process can be erased by an intermediate quantum measurement; for the second process, a noisy classical measurement blocks the effect of history. We then apply memory truncation techniques to recover an efficient description that approximates expectation values for multi-time observables. Our proof-of-principle analysis paves the way for experiments concerning more general non-Markovian quantum processes and highlights where standard open systems techniques break down.
Within the framework of quantum refereed steering games, quantum steerability can be certified without any assumption on the underlying state nor the measurements involved. Such a scheme is termed the measurement-device-independent (MDI) scenario. He re we introduce a measure of steerability in an MDI scenario, i.e., the result merely depends on the observed statistics and the quantum inputs. We prove that such a measure satisfies the convex steering monotone. Moreover, it is robust against not only measurement biases but also losses. We also experimentally estimate the amount of the measure with an entangled photon source. As two by-products, our experimental results provide lower bounds on an entanglement measure of the underlying state and an incompatible measure of the involved measurement. Our research paves a way for exploring one-side device-independent quantum information processing within an MDI framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا