ترغب بنشر مسار تعليمي؟ اضغط هنا

Second sound waves in diamond

122   0   0.0 ( 0 )
 نشر من قبل Valery Khodusov
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The possibility of propagation of second sound waves in diamond single crystals depending on their dimensions, concentrations of isotopes and temperature is studied. At this correct account of phonon scattering on boundaries is important. The calculation of phonon collision frequencies is carried out in the reduced isotropic crystal model using second and third modules of elasticity and in Callaway model on the basis of experimental data on diamond thermal conductivity. Both models give us the consistent values of parameters under which the propagation of SSW is possible. It is discovered that concentrations of isotopes 13C < 10-5, temperatures T < 90K. Such a good agreement provides the reliability of received results and shows the efficiency of reduced isotropic crystal model in the description of diamond properties in low temperature range.



قيم البحث

اقرأ أيضاً

Based on measurements of nonlinear second sound resonances in a high-quality resonator, we have observed a steady-state wave energy cascade in He II involving a flux of energy through the spectral range towards high frequencies. We show that the ener gy balance in the wave system is nonlocal in K-space and that the frequency scales of energy pumping and dissipation are widely separated. The wave amplitude distribution follows a power law over a wide range of frequencies. Numerical computations yield results in agreement with the experimental observations. We suggest that second sound cascades of this kind may be useful for model studies of acoustic turbulence.
50 - J. H. Jiang , M. W. Wu , M. Nagai 2004
We study the formation and decay of electron-hole droplets in diamonds at both low and high temperatures under different excitations by master equations. The calculation reveals that at low temperature the kinetics of the system behaves as in direct- gap semiconductors, whereas at high temperature it shows metastability as in traditional indirect-gap semiconductors. Our results at low temperature are consistent with the experimental findings by Nagai {em et al.} [Phys. Rev. B {bf 68}, 081202 (R) (2003)]. The kinetics of the e-h system in diamonds at high temperature under both low and high excitations is also predicted.
Second sound is known as the thermal transport regime where heat is carried by temperature waves. Its experimental observation was previously restricted to a small number of materials, usually in rather narrow temperature windows. We show that it is possible to overcome these limitations by driving the system with a rapidly varying temperature field. This effect is demonstrated in bulk Ge between 7 kelvin and room temperature, studying the phase lag of the thermal response under a harmonic high frequency external thermal excitation, addressing the relaxation time and the propagation velocity of the heat waves. These results provide a new route to investigate the potential of wave-like heat transport in almost any material, opening opportunities to control heat through its oscillatory nature.
Strong second-harmonic generation has recently been experimentally observed from metamaterials consisting of periodic arrays of metal split ring resonators with an effective negative magnetic permeability [Science, 313, 502 (2006)]. To explore the un derlying physical mechanism, a classical model derived from microscopic theory is employed here. The quasi-free electrons inside the metal are approximated as a classical Coulomb-interacting electron gas, and their motion under the excitation of an external electromagnetic field is described by the cold-plasma wave equations. Through numerical simulations, it is demonstrated that the microscopic theory includes the dominant physical mechanisms bothqualitatively and quantitatively.
We studied the nonlocal transport of a quasi-one dimensional conductor $o$-TaS$_3$. Electric transport phenomena in charge density waves include the thermally-excited quasiparticles, and collective motion of charge density waves (CDW). In spite of it s long-range correlation, the collective motion of a CDW does not extend far beyond the electrodes, where phase slippage breaks the correlation. We found that nonlocal voltages appeared in the CDW of $o$-TaS$_3$, both below and above the threshold field for CDW sliding. The temperature dependence of the nonlocal voltage suggests that the observed nonlocal voltage originates from the CDW even below the threshold field. Moreover, our observation of nonlocal voltages in both the pinned and sliding states reveals the existence of a carrier with long-range correlation, in addition to sliding CDWs and thermally-excited quasiparticles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا