ﻻ يوجد ملخص باللغة العربية
Based on measurements of nonlinear second sound resonances in a high-quality resonator, we have observed a steady-state wave energy cascade in He II involving a flux of energy through the spectral range towards high frequencies. We show that the energy balance in the wave system is nonlocal in K-space and that the frequency scales of energy pumping and dissipation are widely separated. The wave amplitude distribution follows a power law over a wide range of frequencies. Numerical computations yield results in agreement with the experimental observations. We suggest that second sound cascades of this kind may be useful for model studies of acoustic turbulence.
The results of experimental and theoretical studies of the parametric decay instability of capillary waves on the surface of superfluid helium He-II are reported. It is demonstrated that in a system of turbulent capillary waves low-frequency waves ar
The possibility of propagation of second sound waves in diamond single crystals depending on their dimensions, concentrations of isotopes and temperature is studied. At this correct account of phonon scattering on boundaries is important. The calcula
We solve the Navier-Stokes equations with two simultaneous forcings. One forcing is applied at a given large-scale and it injects energy. The other forcing is applied at all scales belonging to the inertial range and it injects helicity. In this way
Superfluid helium is an intimate mixture of a viscous normal fluid, with continuous vorticity, and an inviscid superfluid, where vorticity is constrained to thin, stable topological defects. One mechanism to generate turbulence in this system is thro
In a concurrent work, Villois et al. 2020 reported the evidence that vortex reconnections in quantum fluids follow an irreversible dynamics, namely vortices separate faster than they approach; such time-asymmetry is explained by using simple conserva