ترغب بنشر مسار تعليمي؟ اضغط هنا

Motif Analysis in the Amazon Product Co-Purchasing Network

99   0   0.0 ( 0 )
 نشر من قبل Abhishek Srivastava aas
 تاريخ النشر 2010
والبحث باللغة English




اسأل ChatGPT حول البحث

Online stores like Amazon and Ebay are growing by the day. Fewer people go to departmental stores as opposed to the convenience of purchasing from stores online. These stores may employ a number of techniques to advertise and recommend the appropriate product to the appropriate buyer profile. This article evaluates various 3-node and 4-node motifs occurring in such networks. Community structures are evaluated too.These results may provide interesting insights into user behavior and a better understanding of marketing techniques.



قيم البحث

اقرأ أيضاً

Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging wo rk in social neuroscience that leverages tools from network analysis has begun to pursue this issue, advancing knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individuals social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementation of the concepts that we discuss. We conclude by highlighting a broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.
75 - Shuo Yu , Feng Xia , Jin Xu 2020
Aiming at better representing multivariate relationships, this paper investigates a motif dimensional framework for higher-order graph learning. The graph learning effectiveness can be improved through OFFER. The proposed framework mainly aims at acc elerating and improving higher-order graph learning results. We apply the acceleration procedure from the dimensional of network motifs. Specifically, the refined degree for nodes and edges are conducted in two stages: (1) employ motif degree of nodes to refine the adjacency matrix of the network; and (2) employ motif degree of edges to refine the transition probability matrix in the learning process. In order to assess the efficiency of the proposed framework, four popular network representation algorithms are modified and examined. By evaluating the performance of OFFER, both link prediction results and clustering results demonstrate that the graph representation learning algorithms enhanced with OFFER consistently outperform the original algorithms with higher efficiency.
133 - S. Jalan , C. Y. Ung , J. Bhojwani 2012
We analyze the gene expression data of Zebrafish under the combined framework of complex networks and random matrix theory. The nearest neighbor spacing distribution of the corresponding matrix spectra follows random matrix predictions of Gaussian or thogonal statistics. Based on the eigenvector analysis we can divide the spectra into two parts, first part for which the eigenvector localization properties match with the random matrix theory predictions, and the second part for which they show deviation from the theory and hence are useful to understand the system dependent properties. Spectra with the localized eigenvectors can be characterized into three groups based on the eigenvalues. We explore the position of localized nodes from these different categories. Using an overlap measure, we find that the top contributing nodes in the different groups carry distinguished structural features. Furthermore, the top contributing nodes of the different localized eigenvectors corresponding to the lower eigenvalue regime form different densely connected structure well separated from each other. Preliminary biological interpretation of the genes, associated with the top contributing nodes in the localized eigenvectors, suggests that the genes corresponding to same vector share common features.
In online social media systems users are not only posting, consuming, and resharing content, but also creating new and destroying existing connections in the underlying social network. While each of these two types of dynamics has individually been s tudied in the past, much less is known about the connection between the two. How does user information posting and seeking behavior interact with the evolution of the underlying social network structure? Here, we study ways in which network structure reacts to users posting and sharing content. We examine the complete dynamics of the Twitter information network, where users post and reshare information while they also create and destroy connections. We find that the dynamics of network structure can be characterized by steady rates of change, interrupted by sudden bursts. Information diffusion in the form of cascades of post re-sharing often creates such sudden bursts of new connections, which significantly change users local network structure. These bursts transform users networks of followers to become structurally more cohesive as well as more homogenous in terms of follower interests. We also explore the effect of the information content on the dynamics of the network and find evidence that the appearance of new topics and real-world events can lead to significant changes in edge creations and deletions. Lastly, we develop a model that quantifies the dynamics of the network and the occurrence of these bursts as a function of the information spreading through the network. The model can successfully predict which information diffusion events will lead to bursts in network dynamics.
Social networks provide a new perspective for enterprises to better understand their customers and have attracted substantial attention in industry. However, inferring high quality customer social networks is a great challenge while there are no expl icit customer relations in many traditional OLTP environments. In this paper, we study this issue in the field of passenger transport and introduce a new member to the family of social networks, which is named Co-Travel Networks, consisting of passengers connected by their co-travel behaviors. We propose a novel method to infer high quality co-travel networks of civil aviation passengers from their co-booking behaviors derived from the PNRs (Passenger Naming Records). In our method, to accurately evaluate the strength of ties, we present a measure of Co-Journey Times to count the co-travel times of complete journeys between passengers. We infer a high quality co-travel network based on a large encrypted PNR dataset and conduct a series of network analyses on it. The experimental results show the effectiveness of our inferring method, as well as some special characteristics of co-travel networks, such as the sparsity and high aggregation, compared with other kinds of social networks. It can be expected that such co-travel networks will greatly help the industry to better understand their passengers so as to improve their services. More importantly, we contribute a special kind of social networks with high strength of ties generated from very close and high cost travel behaviors, for further scientific researches on human travel behaviors, group travel patterns, high-end travel market evolution, etc., from the perspective of social networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا