ﻻ يوجد ملخص باللغة العربية
The problem of electron scattering on the one-dimensional complexes is considered. We propose a novel theoretical approach to solution of the transport problem for a quantum graph. In the frame of the developed approach the solution of the transport problem is equivalent to the solution of a linear system of equations for the emph{vertex amplitudes} $mathbf{Psi}$. All major properties, such as transmission and reflection amplitudes, wave function on the graph, probability current, are expressed in terms of one $mathbf{Gamma}$-matrix that determines the transport through the graph. The transmission resonances are analyzed in detail and comparative analysis with known results is carried out.
We study the spectrum of the 1D Dirac Hamiltonian encompassing the bound and scattering states of a fermion distorted by a static background built from $delta$-function potentials. We distinguish between mass-spike and electrostatic $delta$-potential
We discuss a generalization of the conditions of validity of the interpolation method for the density of quenched free energy of mean field spin glasses. The condition is written just in terms of the $L^2$ metric structure of the Gaussian random vari
This paper presents a powerfull method to integrate general monomials on the classical groups with respect to their invariant (Haar) measure. The method has first been applied to the orthogonal group in [J. Math. Phys. 43, 3342 (2002)], and is here u
Three-particle complexes consisting of two holes in the completely filled zero electron Landau level and an excited electron in the unoccupied first Landau level are investigated in a quantum Hall insulator. The distinctive features of these three-pa
In this paper, we provide new proofs of the existence and the condensation of Bethe roots for the Bethe Ansatz equation associated with the six-vertex model with periodic boundary conditions and an arbitrary density of up arrows (per line) in the reg