ﻻ يوجد ملخص باللغة العربية
We study quantum algorithms for testing bipartiteness and expansion of bounded-degree graphs. We give quantum algorithms that solve these problems in time O(N^(1/3)), beating the Omega(sqrt(N)) classical lower bound. For testing expansion, we also prove an Omega(N^(1/4)) quantum query lower bound, thus ruling out the possibility of an exponential quantum speedup. Our quantum algorithms follow from a combination of classical property testing techniques due to Goldreich and Ron, derandomization, and the quantum algorithm for element distinctness. The quantum lower bound is obtained by the polynomial method, using novel algebraic techniques and combinatorial analysis to accommodate the graph structure.
We consider the task of approximating the ground state energy of two-local quantum Hamiltonians on bounded-degree graphs. Most existing algorithms optimize the energy over the set of product states. Here we describe a family of shallow quantum circui
A language L has a property tester if there exists a probabilistic algorithm that given an input x only asks a small number of bits of x and distinguishes the cases as to whether x is in L and x has large Hamming distance from all y in L. We define a
We determine the computational complexity of approximately counting and sampling independent sets of a given size in bounded-degree graphs. That is, we identify a critical density $alpha_c(Delta)$ and provide (i) for $alpha < alpha_c(Delta)$ randomiz
We combine the classical notions and techniques for bounded query classes with those developed in quantum computing. We give strong evidence that quantum queries to an oracle in the class NP does indeed reduce the query complexity of decision problem
Based on the recent breakthrough of Huang (2019), we show that for any total Boolean function $f$, $bullet quad mathrm{deg}(f) = O(widetilde{mathrm{deg}}(f)^2)$: The degree of $f$ is at most quadratic in the approximate degree of $f$. This is optim