ﻻ يوجد ملخص باللغة العربية
We determine the computational complexity of approximately counting and sampling independent sets of a given size in bounded-degree graphs. That is, we identify a critical density $alpha_c(Delta)$ and provide (i) for $alpha < alpha_c(Delta)$ randomized polynomial-time algorithms for approximately sampling and counting independent sets of given size at most $alpha n$ in $n$-vertex graphs of maximum degree $Delta$; and (ii) a proof that unless NP=RP, no such algorithms exist for $alpha>alpha_c(Delta)$. The critical density is the occupancy fraction of hard core model on the clique $K_{Delta+1}$ at the uniqueness threshold on the infinite $Delta$-regular tree, giving $alpha_c(Delta)simfrac{e}{1+e}frac{1}{Delta}$ as $Deltatoinfty$.
By implementing algorithm
We consider numbers and sizes of independent sets in graphs with minimum degree at least $d$, when the number $n$ of vertices is large. In particular we investigate which of these graphs yield the maximum numbers of independent sets of different size
We show that a simple Markov chain, the Glauber dynamics, can efficiently sample independent sets almost uniformly at random in polynomial time for graphs in a certain class. The class is determined by boundedness of a new graph parameter called bipa
Let H be a graph, and let C_H(G) be the number of (subgraph isomorphic) copies of H contained in a graph G. We investigate the fundamental problem of estimating C_H(G). Previous results cover only a few specific instances of this general problem, for
We show that the number of independent sets in cocomparability graphs can be counted in linear time, as can counting cliques in comparability graphs. By contrast, counting cliques in cocomparabilty graphs and counting independent sets in comparabilit