ﻻ يوجد ملخص باللغة العربية
We investigate the QCD phase diagram based on the strong coupling expansion of the lattice QCD with one species of the staggered fermions at finite temperature (T) and chemical potential (mu). We analytically derive an effective potential including both chiral and deconfinement (Z_3) dynamics with finite coupling effects in mean-field approximations. We focus on Polyakov loop properties in whole T-mu plane, and study relations between the chiral and deconfinement crossovers. At a fixed large mu, sequencial rapid variations of the Polyakov loop are observed with increasing T. It is natural to interprete them as the chiral induced and Z_3 induced deconfinement crossovers.
We investigate the QCD phase diagram by using the strong-coupling expansion of the lattice QCD with one species of staggered fermion and the Polyakov loop effective action at finite temperature (T) and quark chemical potential (mu). We derive an anal
Anisotropic lattice spacings are mandatory to reach the high temperatures where chiral symmetry is restored in the strong coupling limit of lattice QCD. Here, we propose a simple criterion for the nonperturbative renormalisation of the anisotropy cou
We investigate the chiral phase transition in the strong coupling lattice QCD at finite temperature and density with finite coupling effects. We adopt one species of staggered fermion, and develop an analytic formulation based on strong coupling and
We study the temperature dependence of bottomonium for temperatures in the range $0.4 T_c < T < 2.1 T_c$, using nonrelativistic dynamics for the bottom quark and full relativistic lattice QCD simulations for $N_f=2$ light flavors on a highly anisotro
We present results for lattice QCD with staggered fermions in the limit of infinite gauge coupling, obtained from a worm-type Monte Carlo algorithm on a discrete spatial lattice but with continuous Euclidean time. This is obtained by sending both the