ﻻ يوجد ملخص باللغة العربية
Anisotropic lattice spacings are mandatory to reach the high temperatures where chiral symmetry is restored in the strong coupling limit of lattice QCD. Here, we propose a simple criterion for the nonperturbative renormalisation of the anisotropy coupling in strongly-coupled SU($N$) or U($N$) lattice QCD with massless staggered fermions. We then compute the renormalised anisotropy, and the strong-coupling analogue of Karschs coefficients (the running anisotropy), for $N=3$. We achieve high precision by combining diagrammatic Monte Carlo and multi-histogram reweighting techniques. We observe that the mean field prediction in the continuous time limit captures the nonperturbative scaling, but receives a large, previously neglected correction on the unit prefactor. Using our nonperturbative prescription in place of the mean field result, we observe large corrections of the same magnitude to the continuous time limit of the static baryon mass, and of the location of the phase boundary associated with chiral symmetry restoration. In particular, the phase boundary, evaluated on different finite lattices, has a dramatically smaller dependence on the lattice time extent. We also estimate, as a byproduct, the pion decay constant and the chiral condensate of massless SU(3) QCD in the strong coupling limit at zero temperature.
Lattice QCD with staggered fermions can be formulated in dual variables to address the finite baryon density sign problem. In the past we have performed simulations in the strong coupling regime, including leading order gauge corrections. In order to
Lattice QCD with staggered fermions at strong coupling has long been studied in a dual representation to circumvent the finite baryon density sign problem. Monte Carlo simulations at finite temperature and density require anisotropic lattices. Recent
The lowest-lying glueballs are investigated in lattice QCD using $N_f=2$ clover Wilson fermion on anisotropic lattices. We simulate at two different and relatively heavy quark masses, corresponding to physical pion mass of $m_pisim 938$ MeV and $650$
We present our final results of the charmonium spectrum in quenched QCD on anisotropic lattices. Simulations are made with the plaquette gauge action and a tadpole improved clover quark action employing $xi = a_s/a_t = 3$. We calculate the spectrum o
We investigate the chiral phase transition in the strong coupling lattice QCD at finite temperature and density with finite coupling effects. We adopt one species of staggered fermion, and develop an analytic formulation based on strong coupling and