ﻻ يوجد ملخص باللغة العربية
A status report is given for a joint project of the Budapest-Marseille-Wuppertal collaboration and the Regensburg group to study the quark mass-dependence of octet baryons in SU(3) Baryon XPT. This formulation is expected to extend to larger masses than Heavy-Baryon XPT. Its applicability is tested with 2+1 flavor data which cover three lattice spacings and pion masses down to about 190 MeV, in large volumes. Also polynomial and rational interpolations in M_pi^2 and M_K^2 are used to assess the uncertainty due to the ansatz. Both frameworks are combined to explore the precision to be expected in a controlled determination of the nucleon sigma term and strangeness content.
By using lattice QCD computations we determine the sigma terms and strangeness content of all octet baryons by means of an application of the Hellmann-Feynman theorem. In addition to polynomial and rational expressions for the quark mass dependence o
The pion-nucleon $sigma$-term can be stringently constrained by the combination of analyticity, unitarity, and crossing symmetry with phenomenological information on the pion-nucleon scattering lengths. Recently, lattice calculations at the physical
Possibilities to extract information on the strange form factors of the nucleon from neutrino (antineutrino) inelastic scattering on nuclei, in an energy range from 200 MeV to 1 GeV and more, are investigated in detail. All calculations are performed
We analyze Nf=2 nucleon mass data with respect to their dependence on the pion mass down to mpi = 157 MeV and compare it with predictions from covariant baryon chiral perturbation theory (BChPT). A novel feature of our approach is that we fit the nuc
The calculation of the strangeness and charmness of the nucleon is presented with overlap fermion action on 2+1 flavor domain wall fermion configurations. We adopt stochastic grid sources and the low mode substitution technique to improve the signals