ترغب بنشر مسار تعليمي؟ اضغط هنا

Nucleon mass and sigma term from lattice QCD with two light fermion flavors

178   0   0.0 ( 0 )
 نشر من قبل Andre Sternbeck
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze Nf=2 nucleon mass data with respect to their dependence on the pion mass down to mpi = 157 MeV and compare it with predictions from covariant baryon chiral perturbation theory (BChPT). A novel feature of our approach is that we fit the nucleon mass data simultaneously with the directly obtained pion-nucleon sigma-term. Our lattice data below mpi = 435 MeV is well described by O(p^4) BChPT and we find sigma=37(8)(6) MeV for the sigma-term at the physical point. Using the nucleon mass to set the scale we obtain a Sommer parameter of r_0=0.501(10)(11) fm.



قيم البحث

اقرأ أيضاً

We present new N_f=2 data for the nucleon generalized form factors, varying volume, lattice spacing and pion mass, down to 150 MeV. We also give an update of our direct calculation of the nucleon sigma term for a range of pion mass values including the lightest one.
We present progress made by the Hadron Spectrum Collaboration (HSC) in determining the tower of excited nucleon states using 2+1-flavor anisotropic clover lattices. The HSC has been investigating interpolating operators projected into irreducible rep resentations of the cubic group in order to better calculate two-point correlators for nucleon spectroscopy; results are published for quenched and 2-flavor anisotropic Wilson lattices. In this work, we present the latest results using a new technique, distillation, which allows us to reach higher statistics than before. Future directions will be outlined at the end.
We investigate the chiral properties of SU(2) gauge theory with six flavors, i.e. six light Dirac fermions in the fundamental representations by lattice simulation, and point out that the spontaneous breakdown of chiral symmetry does not occur in thi s system. The quark mass dependence of the mesonic spectrum provides an evidence for such a possibility. The decay constant tends to be increased by the finite size effect, which is opposite to the behavior predicted by chiral perturbation theory and indicates that the long distance dynamics in the six-flavor theory could be different from the theory with chiral symmetry breaking. The subtracted chiral condensate, whose utility is demonstrated by the simulation of two-flavor theory, is shown to vanish in the chiral limit within the precision of available data.
We present 2+1 flavor Lattice QCD calculations of the nucleon scalar and tensor charges. Using the BMW clover-improved Wilson action with pion masses between 150 and 350 MeV and three source-sink separations between 0.9 and 1.4 fm, we achieve good co ntrol over excited-state contamination and extrapolation to the physical pion mass. As a consistency check, we also present results from calculations using unitary domain wall fermions with pion masses between 300 and 400 MeV, and using domain wall valence quarks and staggered sea quarks with pion masses between 300 and 600 MeV.
Fits of the p^4 covariant SU(2) baryon chiral perturbation theory to lattice QCD nucleon mass data from several collaborations for 2 and 2+1 flavors are presented. We consider contributions from explicit Delta(1232) degrees of freedom, finite volume and finite spacing corrections. We emphasize here our Nf=2+1 study. We obtain low-energy constants of natural size that are compatible with the rather linear pion-mass dependence of the nucleon mass observed in lattice QCD. We report a value for the pion-nucleon sigma term of 41(5)(4) MeV for the 2 flavor case and 52(3)(8) MeV for 2+1 flavors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا