ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-perturbative renormalization-group approach to the Bose-Hubbard model

232   0   0.0 ( 0 )
 نشر من قبل Adam Rancon
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a non-perturbative renormalization-group approach to the Bose-Hubbard model. By taking as initial condition of the RG flow the (local) limit of decoupled sites, we take into account both local and long-distance fluctuations in a nontrivial way. This approach yields a phase diagram in very good quantitative agreement with the quantum Monte Carlo results and reproduces the two universality classes of the superfluid--Mott-insulator transition with a good estimate of the critical exponents. Furthermore, it reveals the crucial role of the Ginzburg length as a crossover length between a weakly- and a strongly-correlated superfluid phase.



قيم البحث

اقرأ أيضاً

272 - N. Dupuis , K. Sengupta 2007
We use a non-perturbative renormalization-group technique to study interacting bosons at zero temperature. Our approach reveals the instability of the Bogoliubov fixed point when $dleq 3$ and yields the exact infrared behavior in all dimensions $d>1$ within a rather simple theoretical framework. It also enables to compute the low-energy properties in terms of the parameters of a microscopic model. In one-dimension and for not too strong interactions, it yields a good picture of the Luttinger-liquid behavior of the superfluid phase.
276 - N. Dupuis , K. Sengupta 2008
The non-perturbative renormalization-group approach is extended to lattice models, considering as an example a $phi^4$ theory defined on a $d$-dimensional hypercubic lattice. Within a simple approximation for the effective action, we solve the flow e quations and obtain the renormalized dispersion $eps(q)$ over the whole Brillouin zone of the reciprocal lattice. In the long-distance limit, where the lattice does not matter any more, we reproduce the usual flow equations of the continuum model. We show how the numerical solution of the flow equations can be simplified by expanding the dispersion in a finite number of circular harmonics.
170 - S. Allen , , A.-M.S. Tremblay 2000
A non-perturbative approach to the single-band attractive Hubbard model is presented in the general context of functional derivative approaches to many-body theories. As in previous work on the repulsive model, the first step is based on a local-fiel d type ansatz, on enforcement of the Pauli principle and a number of crucial sum-rules. The Mermin-Wagner theorem in two dimensions is automatically satisfied. At this level, two-particle self-consistency has been achieved. In the second step of the approximation, an improved expression for the self-energy is obtained by using the results of the first step in an exact expression for the self-energy where the high- and low-frequency behaviors appear separately. The result is a cooperon-like formula. The required vertex corrections are included in this self-energy expression, as required by the absence of a Migdal theorem for this problem. Other approaches to the attractive Hubbard model are critically compared. Physical consequences of the present approach and agreement with Monte Carlo simulations are demonstrated in the accompanying paper (following this one).
We develop a renormalization group approach for analyzing Frohlich polarons and apply it to a problem of impurity atoms immersed in a Bose-Einstein condensate of ultra cold atoms. Polaron energies obtained by our method are in excellent agreement wit h recent diagrammatic Monte Carlo calculations for a wide range of interaction strengths. We calculate the effective mass of polarons and find a smooth crossover from weak to strong coupling regimes. Possible experimental tests of our results in current experiments with ultra cold atoms are discussed.
The universal critical behavior of the driven-dissipative non-equilibrium Bose-Einstein condensation transition is investigated employing the field-theoretical renormalization group method. Such criticality may be realized in broad ranges of driven o pen systems on the interface of quantum optics and many-body physics, from exciton-polariton condensates to cold atomic gases. The starting point is a noisy and dissipative Gross-Pitaevski equation corresponding to a complex valued Landau-Ginzburg functional, which captures the near critical non-equilibrium dynamics, and generalizes Model A for classical relaxational dynamics with non-conserved order parameter. We confirm and further develop the physical picture previously established by means of a functional renormalization group study of this system. Complementing this earlier numerical analysis, we analytically compute the static and dynamical critical exponents at the condensation transition to lowest non-trivial order in the dimensional epsilon expansion about the upper critical dimension d_c = 4, and establish the emergence of a novel universal scaling exponent associated with the non-equilibrium drive. We also discuss the corresponding situation for a conserved order parameter field, i.e., (sub-)diffusive Model B with complex coefficients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا