ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling and self-averaging in the three-dimensional random-field Ising model

182   0   0.0 ( 0 )
 نشر من قبل Nikolaos Fytas G.
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate, by means of extensive Monte Carlo simulations, the magnetic critical behavior of the three-dimensional bimodal random-field Ising model at the strong disorder regime. We present results in favor of the two-exponent scaling scenario, $bar{eta}=2eta$, where $eta$ and $bar{eta}$ are the critical exponents describing the power-law decay of the connected and disconnected correlation functions and we illustrate, using various finite-size measures and properly defined noise to signal ratios, the strong violation of self-averaging of the model in the ordered phase.



قيم البحث

اقرأ أيضاً

We study sample-to-sample fluctuations in a critical two-dimensional Ising model with quenched random ferromagnetic couplings. Using replica calculations in the renormalization group framework we derive explicit expressions for the probability distri bution function of the critical internal energy and for the specific heat fluctuations. It is shown that the disorder distribution of internal energies is Gaussian, and the typical sample-to-sample fluctuations as well as the average value scale with the system size $L$ like $sim L lnln(L)$. In contrast, the specific heat is shown to be self-averaging with a distribution function that tends to a $delta$-peak in the thermodynamic limit $L to infty$. While previously a lack of self-averaging was found for the free energy, we here obtain results for quantities that are directly measurable in simulations, and implications for measurements in the actual lattice system are discussed.
294 - A. Malakis , N.G. Fytas 2008
The three-dimensional bimodal random-field Ising model is investigated using the N-fold version of the Wang-Landau algorithm. The essential energy subspaces are determined by the recently developed critical minimum energy subspace technique, and two implementations of this scheme are utilized. The random fields are obtained from a bimodal discrete $(pmDelta)$ distribution, and we study the model for various values of the disorder strength $Delta$, $Delta=0.5, 1, 1.5$ and 2, on cubic lattices with linear sizes $L=4-24$. We extract information for the probability distributions of the specific heat peaks over samples of random fields. This permits us to obtain the phase diagram and present the finite-size behavior of the specific heat. The question of saturation of the specific heat is re-examined and it is shown that the open problem of universality for the random-field Ising model is strongly influenced by the lack of self-averaging of the model. This property appears to be substantially depended on the disorder strength.
129 - M. Pleimling 2004
In the two-dimensional Ising model weak random surface field is predicted to be a marginally irrelevant perturbation at the critical point. We study this question by extensive Monte Carlo simulations for various strength of disorder. The calculated e ffective (temperature or size dependent) critical exponents fit with the field-theoretical results and can be interpreted in terms of the predicted logarithmic corrections to the pure systems critical behaviour.
We consider the three-dimensional Ising model slightly below its critical temperature, with boundary conditions leading to the presence of an interface. We show how the interfacial properties can be deduced starting from the particle modes of the und erlying field theory. The product of the surface tension and the correlation length yields the particle density along the string whose propagation spans the interface. We also determine the order parameter and energy density profiles across the interface, and show that they are in complete agreement with Monte Carlo simulations that we perform.
133 - M. Zumsande , A.K. Hartmann 2009
The random-field Ising model (RFIM), one of the basic models for quenched disorder, can be studied numerically with the help of efficient ground-state algorithms. In this study, we extend these algorithm by various methods in order to analyze low-ene rgy excitations for the three-dimensional RFIM with Gaussian distributed disorder that appear in the form of clusters of connected spins. We analyze several properties of these clusters. Our results support the validity of the droplet-model description for the RFIM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا