ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical detection of spin transport in non-magnetic metals

114   0   0.0 ( 0 )
 نشر من قبل Frederik Fohr
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We determine the dynamic magnetization induced in non-magnetic metal wedges composed of silver, copper and platinum by means of Brillouin light scattering (BLS) microscopy. The magnetization is transferred from a ferromagnetic Ni80Fe20 layer to the metal wedge via the spin pumping effect. The spin pumping efficiency can be controlled by adding an insulating but transparent interlayer between the magnetic and non-magnetic layer. By comparing the experimental results to a dynamical macroscopic spin-transport model we determine the transverse relaxation time of the pumped spin current which is much smaller than the longitudinal relaxation time.



قيم البحث

اقرأ أيضاً

In this article we extend the currently established diffusion theory of spin-dependent electrical conduction by including spin-dependent thermoelectricity and thermal transport. Using this theory, we propose new experiments aimed at demonstrating nov el effects such as the spin-Peltier effect, the reciprocal of the recently demonstrated thermally driven spin injection, as well as the magnetic heat valve. We use finite-element methods to model specific devices in literature to demonstrate our theory. Spin-orbit effects such as anomalous-Hall, -Nernst, anisotropic magnetoresistance and spin-Hall are also included in this model.
Spin transport in electric conductors is largely determined by two material parameters - spin diffusion length and spin Hall angle. In metals, these are typically determined indirectly by probing magnetoresistance in magnet/metal heterostructures, as suming knowledge of the interfacial properties. We suggest profiling the charge current induced spin Hall spin accumulation in metals, via detection of the magnetic stray field generated by the associated static magnetization, as a direct means of determining spin transport parameters. We evaluate the spatial profile of the stray field as well as the Oersted field generated by the charge current. We thus demonstrate that such a charge current induced spin accumulation is well within the detection limit of contemporary technology. Measuring the stray fields may enable direct access to spin-related properties of metals paving the way for a better and consistent understanding of spin transport therein.
Electron paramagnetic resonance of ensembles of phosphorus donors in silicon has been detected electrically with externally applied magnetic fields lower than 200 G. Because the spin Hamiltonian was dominated by the contact hyperfine term rather than by the Zeeman terms at such low magnetic fields, superposition states $ alpha{}| uparrow downarrow >+beta{}| downarrow uparrow >$ and $-beta{}| uparrow downarrow > + alpha{}| downarrow uparrow >$ were formed between phosphorus electron and nuclear spins, and electron paramagnetic resonance transitions between these superposition states and $| uparrow uparrow >$ or $| downarrow downarrow >$ states are observed clearly. A continuous change of $alpha{}$ and $beta{}$ with the magnetic field was observed with a behavior fully consistent with theory of phosphorus donors in silicon.
112 - A.A. Zyuzin , A.Yu. Zyuzin 2009
We theoretically study the effect of exchange interaction on the non-equilibrium spin waves in disordered paramagnetic metals under the spin injection condition. We show that the gapless spectrum of spin waves, describing the spin precession in the a bsence of the applied magnetic field, changes sign to negative on the paramagnetic side near the ferromagnet - paramagnet phase transition. The damping of spin waves is small in the limit when electron-electron exchange energy is larger than the inverse electron mean free time, while in the opposite limit the propagation of spin waves is strongly suppressed. We discuss the amplification of the electromagnetic field by the non-equilibrium spin waves.
71 - A. Bauer , D. Wegner , 2005
Low-temperature scanning tunneling spectroscopy is used to study electronic structure and dynamics of d-like surface states of trivalent lanthanide metals from La to Lu. The magnetic exchange splitting of these states is found to scale with the 4f sp in multiplied by an effective exchange-coupling constant that increases with 4f occupancy in an approximately linear way. The dynamics of the surfaces states, as revealed by the lifetime width, is dominated by electron-phonon scattering in the occupied region and by electron-magnon scattering in the unoccupied region, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا