ﻻ يوجد ملخص باللغة العربية
Electron paramagnetic resonance of ensembles of phosphorus donors in silicon has been detected electrically with externally applied magnetic fields lower than 200 G. Because the spin Hamiltonian was dominated by the contact hyperfine term rather than by the Zeeman terms at such low magnetic fields, superposition states $ alpha{}| uparrow downarrow >+beta{}| downarrow uparrow >$ and $-beta{}| uparrow downarrow > + alpha{}| downarrow uparrow >$ were formed between phosphorus electron and nuclear spins, and electron paramagnetic resonance transitions between these superposition states and $| uparrow uparrow >$ or $| downarrow downarrow >$ states are observed clearly. A continuous change of $alpha{}$ and $beta{}$ with the magnetic field was observed with a behavior fully consistent with theory of phosphorus donors in silicon.
The electrical detection of spin echoes via echo tomography is used to observe decoherence processes associated with the electrical readout of the spin state of phosphorus donor electrons in silicon near a SiO$_2$ interface. Using the Carr-Purcell pu
We investigate transport in phosphorus-doped buried-channel metal-oxide-semiconductor field-effect transistors at temperatures between 10 and 295 K. In a range of doping concentration between around 2.1 and 8.7 x 1017 cm-3, we find that a clear peak
We demonstrate coherent control of donor wavefunctions in phosphorous-doped silicon. Our experiments take advantage of a free electron laser to stimulate and observe photon echoes from, and Rabi oscillations between the ground and first excited state of P donors in Si.
Nuclear spins are highly coherent quantum objects. In large ensembles, their control and detection via magnetic resonance is widely exploited, e.g. in chemistry, medicine, materials science and mining. Nuclear spins also featured in early ideas and d
We propose a method to electrically control electron spins in donor-based qubits in silicon. By taking advantage of the hyperfine coupling difference between a single-donor and a two-donor quantum dot, spin rotation can be driven by inducing an elect