ترغب بنشر مسار تعليمي؟ اضغط هنا

Field-Induced Gap in a Quantum Spin-1/2 Chain in a Strong Magnetic Field

149   0   0.0 ( 0 )
 نشر من قبل Sergei Zvyagin
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic excitations in copper pyrimidine dinitrate, a spin-1/2 antiferromagnetic chain with alternating $g$-tensor and Dzyaloshinskii-Moriya interactions that exhibits a field-induced spin gap, are probed by means of pulsed-field electron spin resonance spectroscopy. In particular, we report on a minimum of the gap in the vicinity of the saturation field $H_{sat}=48.5$ T associated with a transition from the sine-Gordon region (with soliton-breather elementary excitations) to a spin-polarized state (with magnon excitations). This interpretation is fully confirmed by the quantitative agreement over the entire field range of the experimental data with the DMRG investigation of the spin-1/2 Heisenberg chain with a staggered transverse field.



قيم البحث

اقرأ أيضاً

We investigate the low-temperature magnetic properties of the molecule-based chiral spin chain [Cu(pym)(H$_2$O)$_4$]SiF$_6cdot$H$_2$O (pym = pyrimidine). Electron-spin resonance, magnetometry and heat capacity measurements reveal the presence of stag gered $g$ tensors, a rich low-temperature excitation spectrum, a staggered susceptibility and a spin gap that opens on the application of a magnetic field. These phenomena are reminiscent of those previously observed in non-chiral staggered chains, which are explicable within the sine-Gordon quantum-field theory. In the present case, however, although the sine-Gordon model accounts well for the form of the temperature-dependence of the heat capacity, the size of the gap and its measured linear field dependence do not fit with the sine-Gordon theory as it stands. We propose that the differences arise due to additional terms in the Hamiltonian resulting from the chiral structure of [Cu(pym)(H$_2$O)$_4$]SiF$_6cdot$H$_2$O, particularly a uniform Dzyaloshinskii-Moriya coupling and a four-fold periodic staggered field.
The frustrated isotropic $J_1-J_2$ model with ferromagnetic $J_1$ and anti-ferromagnetic $J_2$ interactions in presence of an axial magnetic field shows many exotic phases, such as vector chiral and multipolar phases. The existing studies of the phas e boundaries of these systems are based on the indirect evidences such as correlation functions {it etc}. In this paper, the phase boundaries of these exotic phases are calculated based on order parameters and jumps in the magnetization. In the strong magnetic field, $Z_2$ symmetry is broken, therefore, order parameter of the vector chiral phase is calculated using the broken symmetry states. Our results obtained using the modified density matrix renormalization group and exact diagonalization methods, suggest that the vector chiral phase exist only in narrow range of parameter space $J_2/J_1$.
116 - K. Ueda , J. Fujioka , B.-J. Yang 2015
We have investigated magneto-transport properties in a single crystal of pyrochore-type Nd2Ir2O7. The metallic conduction is observed on the antiferromagnetic domain walls of the all-in all-out type Ir-5d moment ordered insulating bulk state, that ca n be finely controlled by external magnetic field along [111]. On the other hand, an applied field along [001] induces the bulk phase transition from insulator to semimetal as a consequence of the field-induced modification of Nd-4f and Ir-5d moment configurations. A theoretical calculation consistently describing the experimentally observed features suggests a variety of exotic topological states as functions of electron correlation and Ir-5d moment orders which can be finely tuned by choice of rare-earth ion and by magnetic field, respectively.
The magnetoelectric (ME) effects are investigated in a cubic compound SrCuTe2O6, in which uniform Cu2+ (S=1/2) spin chains with considerable spin frustration exhibit a concomitant antiferromagnetic transition and dielectric constant peak at TN=5.5 K. Pyroelectric Jp(T) and magnetoelectric current JME(H) measurements in the presence of a bias electric field are used to reveal that SrCuTe2O6 shows clear variations of Jp(T) across TN at constant magnetic fields. Furthermore, isothermal measurements of JME(H) also develop clear peaks at finite magnetic fields, of which traces are consistent with the spin-flop transitions observed in the magnetization studies. As a result, the anomalies observed in Jp(T) and JME(H) curves well match with the field-temperature phase diagram constructed from magnetization and dielectric constant measurements, demonstrating that SrCuTe2O6 is a new magnetoelectric compound with S=1/2 spin chains.
Magnetoelastic measurements in the piezomagnetic antiferromagnet UO$_{2}$ were performed via the fiber Bragg grating method in magnetic fields up to $150,mathrm{T}$ generated by a single-turn coil setup. We show that in short timescales, order of a f ew micro seconds, pulsed-magnetic fields excite mechanical resonances at temperatures ranging from $10,mathrm{K}$ to $300,mathrm{K}$, in the paramagnetic as well as within the robust antiferromagnetic state of the material. These resonances, which are barely attenuated within the 100 ms observations, are attributed to the strong magnetoelastic coupling in UO$_{2}$ combined with the high crystallographic quality of the single crystal samples. They compare well with mechanical resonances obtained by a resonant ultrasound technique and superimpose on the known non-monotonic magnetostriction background. A clear phase-shift of $pi$ in the lattice oscillations is, unexpectedly, observed in the antiferromagnetic state when the magnetic field overcomes the piezomagnetic switch-field $H_c simeq -18,mathrm{T}$. We further present simulations and a theoretical argument to explain the observed phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا