ﻻ يوجد ملخص باللغة العربية
The frustrated isotropic $J_1-J_2$ model with ferromagnetic $J_1$ and anti-ferromagnetic $J_2$ interactions in presence of an axial magnetic field shows many exotic phases, such as vector chiral and multipolar phases. The existing studies of the phase boundaries of these systems are based on the indirect evidences such as correlation functions {it etc}. In this paper, the phase boundaries of these exotic phases are calculated based on order parameters and jumps in the magnetization. In the strong magnetic field, $Z_2$ symmetry is broken, therefore, order parameter of the vector chiral phase is calculated using the broken symmetry states. Our results obtained using the modified density matrix renormalization group and exact diagonalization methods, suggest that the vector chiral phase exist only in narrow range of parameter space $J_2/J_1$.
$beta$-TeVO$_4$ is a frustrated spin 1/2 zig-zag chain system,where spin-density-wave (SDW), vector chiral (VC)and an exotic dynamic spin-stripe phase compete at low temperatures. Here we use torque magnetometry to study the anisotropy of these phase
Motifs of periodic modulations are encountered in a variety of natural systems, where at least two rival states are present. In strongly correlated electron systems such behaviour has typically been associated with competition between short- and long
We study spontaneous dimerization and emergent criticality in a spin-3/2 chain with antiferromagnetic nearest-neighbor $J_1$, next-nearest-neighbor $J_2$ and three-site $J_3$ interactions. In the absence of three-site interaction $J_3$, we provide ev
Here we study the emergence of different Symmetry-Protected Topological (SPT) phases in a spin-2 quantum chain. We consider a Heisenberg-like model with bilinear, biquadratic, bicubic, and biquartic nearest-neighbor interactions, as well as uniaxial
The spin-nematic phase is an intriguing state of matter that lacks usual long-range dipolar order, yet it exhibits higher multipolar order. This makes its detection extremely difficult and controversial. Recently, nuclear magnetic resonance (NMR) has