ﻻ يوجد ملخص باللغة العربية
We introduce two families of soliton hierarchies: the twisted hierarchies associated to symmetric spaces. The Lax pairs of these two hierarchies are Laurent polynomials in the spectral variable. Our constructions gives a hierarchy of commuting flows for the generalized sine-Gordon equation (GSGE), which is the Gauss-Codazzi equation for n-dimensional submanifolds in Euclidean (2n-1)-space with constant sectional curvature -1. In fact, the GSGE is the first order system associated to a twisted Grassmannian system. We also study symmetries for the GSGE.
There is a general method for constructing a soliton hierarchy from a splitting of a loop group as a positive and a negative sub-groups together with a commuting linearly independent sequence in the positive Lie subalgebra. Many known soliton hierarc
An involutive diffeomorphism $sigma$ of a connected smooth manifold $M$ is called dissecting if the complement of its fixed point set is not connected. Dissecting involutions on a complete Riemannian manifold are closely related to constructive quant
We introduce a combinatorial method to construct indefinite Ricci-flat metrics on nice nilpotent Lie groups. We prove that every nilpotent Lie group of dimension $leq6$, every nice nilpotent Lie group of dimension $leq7$ and every two-step nilpoten
We give a survey of the following six closely related topics: (i) a general method for constructing a soliton hierarchy from a splitting of a loop algebra into positive and negative subalgebras, together with a sequence of commuting positive elements
The group of almost Riordan arrays contains the group of Riordan arrays as a subgroup. In this note, we exhibit examples of pseudo-involutions, involutions and quasi-involutions in the group of almost Riordan arrays.