ﻻ يوجد ملخص باللغة العربية
In the optical conductivity of four different manganites with commensurate charge order (CO), strong peaks appear in the meV range below the ordering temperature T_{CO}. They are similar to those reported for one-dimensional charge density waves (CDW) and are assigned to pinned phasons. The peaks and their overtones allow one to obtain, for La{1-n/8}Ca{n/8}$MnO{3} with n = 5, 6, the electron-phonon coupling, the effective mass of the CO system, and its contribution to the dielectric constant. These results support a description of the CO in La-Ca manganites in terms of moderately weak-coupling and of the CDW theory.
The so-called stripe phase of the manganites is an important example of the complex behaviour of metal oxides, and has long been interpreted as the localisation of charge at atomic sites. Here, we demonstrate via resistance measurements on La_{0.50}C
Electron-phonon-driven charge density waves can in some circumstances allow electronic correlations to become predominant, driving a system into a Mott insulating state. New insights into both the Mott state and preceding charge density wave may resu
Impurity pinning has long been discussed to have a profound effect on the dynamics of an incommensurate charge density wave (CDW), which would otherwise slide through the lattice without resistance. Here we visualize the impurity pinning evolution of
Charge density waves in transition metal dichalcogenides have been intensively studied for their close correlation with Mott insulator, charge-transfer insulator, and superconductor. VTe2 monolayer recently comes into sight because of its prominent e
Charge density waves (CDWs) underpin the electronic properties of many complex materials. Near-equilibrium CDW order is linearly coupled to a periodic, atomic-structural distortion, and the dynamics is understood in terms of amplitude and phase modes