ﻻ يوجد ملخص باللغة العربية
We study three dimensional insulators with inversion symmetry, in which other point group symmetries, such as time reversal, are generically absent. Their band topology is found to be classified by the parities of occupied states at time reversal invariant momenta (TRIM parities), and by three Chern numbers. The TRIM parities of any insulator must satisfy a constraint: their product must be +1. The TRIM parities also constrain the Chern numbers modulo two. When the Chern numbers vanish, a magneto-electric response parameterized by theta is defined and is quantized to theta= 0, 2pi. Its value is entirely determined by the TRIM parities. These results may be useful in the search for magnetic topological insulators with large theta. A classification of inversion symmetric insulators is also given for general dimensions. An alternate geometrical derivation of our results is obtained by using the entanglement spectrum of the ground state wave-function.
In this article we extend the celebrated Berry-phase formulation of electric polarization in crystals to higher electric multipole moments. We determine the necessary conditions under which, and minimal models in which, the quadrupole and octupole mo
Topologically quantized response is one of the focal points of contemporary condensed matter physics. While it directly results in quantized response coefficients in quantum systems, there has been no notion of quantized response in classical systems
The theory of topological insulators and superconductors has mostly focused on non-interacting and gapped systems. This review article discusses topological phases that are either gapless or interacting. We discuss recent progress in identifying gapl
How do we uniquely identify a quantum phase, given its ground state wave-function? This is a key question for many body theory especially when we consider phases like topological insulators, that share the same symmetry but differ at the level of top
We study surface states of topological crystalline insulators and superconductors protected by inversion symmetry. These fall into the category of higher-order topological insulators and superconductors which possess surface states that propagate alo