ﻻ يوجد ملخص باللغة العربية
We construct and analyze a climate network which represents the interdependent structure of the climate in different geographical zones and find that the network responds in a unique way to El-Ni~{n}o events. Analyzing the dynamics of the climate network shows that when El-Ni~{n}o events begin, the El-Ni~{n}o basin partially loses its influence on its surroundings. After typically three months, this influence is restored while the basin loses almost all dependence on its surroundings and becomes textit{autonomous}. The formation of an autonomous basin is the missing link to understand the seemingly contradicting phenomena of the afore--noticed weakening of the interdependencies in the climate network during El-Ni~{n}o and the known impact of the anomalies inside the El-Ni~{n}o basin on the global climate system.
The temperatures in different zones in the world do not show significant changes due to El-Nino except when measured in a restricted area in the Pacific Ocean. We find, in contrast, that the dynamics of a climate network based on the same temperature
The connectivity pattern of networks, which are based on a correlation between ground level temperature time series, shows a dominant dense stripe of links in the southern ocean. We show that statistical categorization of these links yields a clear a
Although anomalous episodical warming of the eastern equatorial Pacific, dubbed El Ni~no by Peruvian fishermen, has major (and occasionally devastating) impacts around the globe, robust forecasting is still limited to about six months ahead. A signif
El Ni~no-Southern Oscillation (ENSO) exhibits diverse characteristics in spatial pattern, peak intensity, and temporal evolution. Here we develop a three-region multiscale stochastic model to show that the observed ENSO complexity can be explained by
Different definitions of links in climate networks may lead to considerably different network topologies. We construct a network from climate records of surface level atmospheric temperature in different geographical sites around the globe using two