ﻻ يوجد ملخص باللغة العربية
The temperatures in different zones in the world do not show significant changes due to El-Nino except when measured in a restricted area in the Pacific Ocean. We find, in contrast, that the dynamics of a climate network based on the same temperature records in various geographical zones in the world is significantly influenced by El-Nino. During El-Nino many links of the network are broken, and the number of surviving links comprises a specific and sensitive measure for El-Nino events. While during non El-Nino periods these links which represent correlations between temperatures in different sites are more stable, fast fluctuations of the correlations observed during El-Nino periods cause the links to break.
We construct and analyze a climate network which represents the interdependent structure of the climate in different geographical zones and find that the network responds in a unique way to El-Ni~{n}o events. Analyzing the dynamics of the climate net
Modern weather and climate models share a common heritage, and often even components, however they are used in different ways to answer fundamentally different questions. As such, attempts to emulate them using machine learning should reflect this. W
We construct and analyze climate networks based on daily satellite measurements of temperatures and geopotential heights. We show that these networks are stable during time and are similar over different altitudes. Each link in our network is stable
Although anomalous episodical warming of the eastern equatorial Pacific, dubbed El Ni~no by Peruvian fishermen, has major (and occasionally devastating) impacts around the globe, robust forecasting is still limited to about six months ahead. A signif
Assessments of impacts of climate change and future projections over the Indian region, have so far relied on a single regional climate model (RCM) - eg., the PRECIS RCM of the Hadley Centre, UK. While these assessments have provided inputs to variou