ترغب بنشر مسار تعليمي؟ اضغط هنا

Age and helium content of the open cluster NGC 6791 from multiple eclipsing binary members. I. Measurements, methods, and first results

202   0   0.0 ( 0 )
 نشر من قبل Karsten Brogaard
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Earlier measurements of the masses and radii of the detached eclipsing binary V20 in the open cluster NGC 6791 were accurate enough to demonstrate that there are significant differences between current stellar models. Here we improve on those results and add measurements of two additional detached eclipsing binaries, the cluster members V18 and V80. The enlarged sample sets much tighter constraints on the properties of stellar models than has hitherto been possible, thereby improving both the accuracy and precision of the cluster age. We employed (i) high-resolution UVES spectroscopy of V18, V20 and V80 to determine their spectroscopic effective temperatures, [Fe/H] values, and spectroscopic orbital elements, and (ii) time-series photometry from the Nordic Optical Telescope to obtain the photometric elements. The masses and radii of the V18 and V20 components are found to high accuracy, with errors on the masses in the range 0.27-0.36% and errors on the radii in the range 0.61-0.92%. V80 is found to be magnetically active, and more observations are needed to determine its parameters accurately. The metallicity of NGC 6791 is measured from disentangled spectra of the binaries and a few single stars to be [Fe/H]= +0.29 pm 0.03 (random) pm 0.07 (systematic). The cluster reddening and apparent distance modulus are found to be E(B - V) = 0.160 pm 0.025 and (m - M)V = 13.51 pm 0.06 . A first model comparison shows that we can constrain the helium content of the NGC 6791 stars, and thus reach a more accurate age than previously possible. It may be possible to constrain additional parameters, in particular the C, N, and O abundances. This will be investigated in paper II.



قيم البحث

اقرأ أيضاً

Models of stellar structure and evolution can be constrained using accurate measurements of the parameters of eclipsing binary members of open clusters. Multiple binary stars provide the means to tighten the constraints and, in turn, to improve the p recision and accuracy of the age estimate of the host cluster. In the previous two papers of this series, we have demonstrated the use of measurements of multiple eclipsing binaries in the old open cluster NGC6791 to set tighter constraints on the properties of stellar models than was previously possible, thereby improving both the accuracy and precision of the cluster age. We identify and measure the properties of a non-eclipsing cluster member, V56, in NGC,6791 and demonstrate how this provides additional model constraints that support and strengthen our previous findings. We analyse multi-epoch spectra of V56 from FLAMES in conjunction with the existing photometry and measurements of eclipsing binaries in NGC6971. The parameters of the V56 components are found to be $M_{rm p}=1.103pm 0.008 M_{odot}$ and $M_{rm s}=0.974pm 0.007 M_{odot}$, $R_{rm p}=1.764pm0.099 R_{odot}$ and $R_{rm s}=1.045pm0.057 R_{odot}$, $T_{rm eff,p}=5447pm125$ K and $T_{rm eff,s}=5552pm125$ K, and surface [Fe/H]=$+0.29pm0.06$ assuming that they have the same abundance. The derived properties strengthen our previous best estimate of the cluster age of $8.3pm0.3$ Gyr and the mass of stars on the lower red giant branch (RGB), which is $M_{rm RGB} = 1.15pm0.02M_{odot}$ for NGC6791. These numbers therefore continue to serve as verification points for other methods of age and mass measures, such as asteroseismology.
136 - E. Dalessandro 2015
We present the first evidence of clear signatures of tidal distortions in the density distribution of the fascinating open cluster NGC 6791. We used deep and wide-field data obtained with the Canada-France-Hawaii-Telescope covering a 2x2 square degre es area around the cluster. The two-dimensional density map obtained with the optimal matched filter technique shows a clear elongation and an irregular distribution starting from ~300 from the cluster center. At larger distances, two tails extending in opposite directions beyond the tidal radius are also visible. These features are aligned to both the absolute proper motion and to the Galactic center directions. Moreover, other overdensities appear to be stretched in a direction perpendicular to the Galactic plane. Accordingly to the behaviour observed in the density map, we find that both the surface brightness and the star count density profiles reveal a departure from a King model starting from ~600 from the center. These observational evidence suggest that NGC 6791 is currently experiencing mass loss likely due to gravitational shocking and interactions with the tidal field. We use this evidence to argue that NGC 6791 should have lost a significant fraction of its original mass. A larger initial mass would in fact explain why the cluster survived so long. Using available recipes based on analytic studies and N-body simulations, we derived the expected mass loss due to stellar evolution and tidal interactions and estimated the initial cluster mass to be M_ini=(1.5-4) x 10^5 M_sun.
Accurate stellar parameters of stars in open clusters can help constrain models of stellar structure and evolution. Here we wish to determine the age and metallicity content of the open cluster NGC 2506. To this end we investigated three detached ecl ipsing binaries (DEBs; V2032, V4, and V5) for which we determined their masses and radii, as well as four red giant branch stars for which we determined their effective temperatures, surface gravities, and metallicities. Three of the stars in the DEBs have masses close to the cluster turn-off mass, allowing for extremely precise age determination. Comparing the values for the masses and radii of the binaries to BaSTI isochrones we estimated a cluster age of $2.01 pm 0.10$ Gyr. This does depend on the models used in the comparison, where we have found that the inclusion of convective core-overshooting is necessary to properly model the cluster. From red giant branch stars we determined values for the effective temperatures, the surface gravities, and the metallicities. From these we find a cluster metallicity of $-0.36 pm 0.10$ dex. Using this value and the values for the effective temperatures we determine the reddening to be E$(b - y) = 0.057 pm 0.004$ mag. Furthermore, we derived the distance to the cluster from Gaia parallaxes and found $3.101 pm 0.017$ kpc, and we have performed a radial velocity membership determination for stars in the field of the cluster. Finally, we report on the detection of oscillation signals in $gamma$ Dor and $delta$ Scuti members in data from the TESS mission, including the possible detection of solar-like oscillations in two of the red giants.
The open cluster NGC 6791 is among the oldest, most massive and metal-rich open clusters in the Galaxy. High-resolution $H$-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) of 11 red giants in NGC 6791 are analyze d for their chemical abundances of iron, oxygen, and sodium. The abundances of these three elements are found to be homogeneous (with abundance dispersions at the level of $sim$ 0.05 - 0.07 dex) in these cluster red giants, which span much of the red-giant branch (T$_{rm eff}$ $sim$ 3500K - 4600K), and include two red-clump giants. From the infrared spectra, this cluster is confirmed to be among the most metal-rich clusters in the Galaxy ($<$[Fe/H]$>$ = 0.34 $pm$ 0.06), and is found to have a roughly solar value of [O/Fe] and slightly enhanced [Na/Fe]. Non-LTE calculations for the studied Na I lines in the APOGEE spectral region ($lambda$16373.86AA and $lambda$16388.85AA) indicate only small departures from LTE ($leq$ 0.04 dex) for the parameter range and metallicity of the studied stars. The previously reported double population of cluster members with different Na abundances is not found among the studied sample.
134 - A. Bragaglia , C. Sneden (2 , 3 2014
Galactic open and globular clusters (OCs, GCs) appear to inhabit separate regions of the age-mass plane. However, the transition between them is not easily defined because there is some overlap between high-mass, old OCs and low-mass, young GCs. We a re exploring the possibility of a clear-cut separation between OCs and GCs using an abundance feature that has been found so far only in GCs: (anti)correlations between light elements. Among the coupled abundance trends, the Na-O anticorrelation is the most widely studied. These anticorrelations are the signature of self-enrichment, i.e., of a formation mechanism that implies multiple generations of stars. Here we concentrate on the old, massive, metal-rich OC NGC 6791. We analyzed archival Keck/HIRES spectra of 15 NGC 6791 main sequence turn-off and evolved stars, concentrating on the derivation of C, N, O, and Na abundances. We also used WIYN/Hydra spectra of 21 evolved stars (one is in common). Given the spectral complexity of the very metal-rich NGC 6791 stars, we employed spectrum synthesis to measure most of the abundances. We confirmed the cluster super-solar metallicity and abundances of Ca and Ni that have been derived in past studies. More importantly, we did not detect any significant star-to-star abundance dispersion in C, N, O and Na. Based on the absence of a clear Na-O anticorrelation, NGC 6791 can still be considered a true OC, hosting a single generation of stars, and not a low-mass GC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا