ترغب بنشر مسار تعليمي؟ اضغط هنا

Sodium and Oxygen Abundances in the Open Cluster NGC 6791 from APOGEE H-Band Spectroscopy

178   0   0.0 ( 0 )
 نشر من قبل Katia Cunha
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The open cluster NGC 6791 is among the oldest, most massive and metal-rich open clusters in the Galaxy. High-resolution $H$-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) of 11 red giants in NGC 6791 are analyzed for their chemical abundances of iron, oxygen, and sodium. The abundances of these three elements are found to be homogeneous (with abundance dispersions at the level of $sim$ 0.05 - 0.07 dex) in these cluster red giants, which span much of the red-giant branch (T$_{rm eff}$ $sim$ 3500K - 4600K), and include two red-clump giants. From the infrared spectra, this cluster is confirmed to be among the most metal-rich clusters in the Galaxy ($<$[Fe/H]$>$ = 0.34 $pm$ 0.06), and is found to have a roughly solar value of [O/Fe] and slightly enhanced [Na/Fe]. Non-LTE calculations for the studied Na I lines in the APOGEE spectral region ($lambda$16373.86AA and $lambda$16388.85AA) indicate only small departures from LTE ($leq$ 0.04 dex) for the parameter range and metallicity of the studied stars. The previously reported double population of cluster members with different Na abundances is not found among the studied sample.



قيم البحث

اقرأ أيضاً

NGC 2420 is a $sim$2 Gyr-old well-populated open cluster that lies about 2 kpc beyond the solar circle, in the general direction of the Galactic anti-center. Most previous abundance studies have found this cluster to be mildly metal-poor, but with a large scatter in the obtained metallicities for this open cluster. Detailed chemical abundance distributions are derived for 12 red-giant members of NGC 2420 via a manual abundance analysis of high-resolution (R = 22,500) near-infrared ($lambda$1.5 - 1.7$mu$m) spectra obtained from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The sample analyzed contains 6 stars that are identified as members of the first-ascent red giant branch (RGB), as well as 6 members of the red clump (RC). We find small scatter in the star-to-star abundances in NGC 2420, with a mean cluster abundance of [Fe/H] = -0.16 $pm$ 0.04 for the 12 red giants. The internal abundance dispersion for all elements (C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Co and Ni) is also very small ($sim$0.03 - 0.06 dex), indicating a uniform cluster abundance distribution within the uncertainties. NGC 2420 is one of the clusters used to calibrate the APOGEE Stellar Parameter and Chemical Abundance Pipeline (ASPCAP). The results from this manual analysis compare well with ASPCAP abundances for most of the elements studied, although for Na, Al and V there are more significant offsets. No evidence of extra-mixing at the RGB luminosity bump is found in the $^{12}$C and $^{14}$N abundances from the pre-luminosity-bump RGB stars in comparison to the post-He core-flash RC stars.
121 - E. Dalessandro 2015
We present the first evidence of clear signatures of tidal distortions in the density distribution of the fascinating open cluster NGC 6791. We used deep and wide-field data obtained with the Canada-France-Hawaii-Telescope covering a 2x2 square degre es area around the cluster. The two-dimensional density map obtained with the optimal matched filter technique shows a clear elongation and an irregular distribution starting from ~300 from the cluster center. At larger distances, two tails extending in opposite directions beyond the tidal radius are also visible. These features are aligned to both the absolute proper motion and to the Galactic center directions. Moreover, other overdensities appear to be stretched in a direction perpendicular to the Galactic plane. Accordingly to the behaviour observed in the density map, we find that both the surface brightness and the star count density profiles reveal a departure from a King model starting from ~600 from the center. These observational evidence suggest that NGC 6791 is currently experiencing mass loss likely due to gravitational shocking and interactions with the tidal field. We use this evidence to argue that NGC 6791 should have lost a significant fraction of its original mass. A larger initial mass would in fact explain why the cluster survived so long. Using available recipes based on analytic studies and N-body simulations, we derived the expected mass loss due to stellar evolution and tidal interactions and estimated the initial cluster mass to be M_ini=(1.5-4) x 10^5 M_sun.
High-dispersion spectra of 333 stars in the open cluster NGC 6819, obtained using the HYDRA spectrograph on the WIYN 3.5m telescope, have been analyzed to determine the abundances of iron and other metals from lines in the 400 A region surrounding th e Li 6708 A line. Our spectra, with signal-to-noise per pixel (SNR) ranging from 60 to 300, span the luminosity range from the tip of the red giant branch to a point two magnitudes below the top of the cluster turnoff. We derive radial and rotational velocities for all stars, as well as [Fe/H] based on 17 iron lines, [Ca/H], [Si/H], and [Ni/H] in the 247 most probable, single members of the cluster. Input temperature estimates for model atmosphere analysis are provided by (B-V) colors merged from several sources, with individual reddening corrections applied to each star relative to a cluster mean of E(B-V) = 0.16. Extensive use is made of ROBOSPECT, an automatic equivalent width measurement program; its effectiveness on large spectroscopic samples is discussed. From the sample of likely single members, [Fe/H] = -0.03 +/- 0.06, where the error describes the median absolute deviation about the sample median value, leading to an internal precision for the cluster below 0.01 dex. The final uncertainty in the cluster abundance is therefore dominated by external systematics due to the temperature scale, surface gravity, and microturbulent velocity, leading to [Fe/H] = -0.02 +/- 0.02 for a sub-sample restricted to main sequence and turnoff stars. This result is consistent with our recent intermediate-band photometric determination of a slightly subsolar abundance for this cluster. [Ca/Fe], [Si/Fe], and [Ni/Fe] are determined to be solar within the uncertainties. NGC 6819 has an abundance distribution typical of solar metallicity thin disk stars in the solar neighborhood.
305 - Bruce A. Twarog 2010
NGC 6791 is an old, metal-rich star cluster normally considered to be a disk open cluster. Its red giant branch is broad in color yet, to date, there is no evidence for a metallicity spread among its stars. The turnoff region of the main sequence is also wider than expected from broad-band photometric errors. Analysis of the color-magnitude diagram reveals a color gradient between the core of the cluster and its periphery; we evaluate the potential explanations for this trend. While binarity and photometric errors appear unlikely, reddening variations across the face of the cluster cannot be excluded. We argue that a viable alternative explanation for this color trend is an age spread resulting from a protracted formation time for the cluster; the stars of the inner region of NGC 6791 appear to be older by ~1 Gyr on average than those of the outer region.
We report on Kepler photometry of the hot sdB star B4 in the open cluster NGC 6791. We confirm that B4 is a reflection effect binary with an sdB component and a low-mass main sequence companion with a circular 0.3985 d orbit. The sdB star is a g-mode pulsator (a V1093 Her star) with periods ranging from 2384 s to 7643 s. Several of the pulsation modes show symmetric splitting by 0.62 microHz. Attributing this to rotational splitting, we conclude that the sdB component has a rotation period of approximately 9.63 d, indicating that tidal synchronization has not been achieved in this system. Comparison with theoretical synchronization time provides a discriminant between various theoretical models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا