ﻻ يوجد ملخص باللغة العربية
A method is described for the reconstruction of the amplitude and phase of the object exit wave function by phase-plate transmission electron microscopy. The proposed method can be considered as in-line holography and requires three images, taken with different phase shifts between undiffracted and diffracted electrons induced by a suitable phase-shifting device. The proposed method is applicable for arbitrary object exit wave functions and non-linear image formation. Verification of the method is performed for examples of a simulated crystalline object wave function and a wave function acquired with off-axis holography. The impact of noise on the reconstruction of the wave function is investigated.
Increasing interest in three-dimensional nanostructures adds impetus to electron microscopy techniques capable of imaging at or below the nanoscale in three dimensions. We present a reconstruction algorithm that takes as input a focal series of four-
Thin-film based phase plates are meanwhile a widespread tool to enhance the contrast of weak-phase objects in transmission electron microscopy (TEM). The thin film usually consists of amorphous carbon, which suffers from quick degeneration under the
In this theoretical study we analyze contrast transfer of weak-phase objects in a transmission electron microscope, which is equipped with an aberration corrector (Cs-corrector) in the imaging lens system and a physical phase plate in the back focal
Single atoms can be considered as basic objects for electron microscopy to test the microscope performance and basic concepts for modeling of image contrast. In this work high-resolution transmission electron microscopy was applied to image single pl
Thin film oxides are a source of endless fascination for the materials scientist. These materials are highly flexible, can be integrated into almost limitless combinations, and exhibit many useful functionalities for device applications. While precis