ﻻ يوجد ملخص باللغة العربية
Finding sparse solutions of underdetermined systems of linear equations is a fundamental problem in signal processing and statistics which has become a subject of interest in recent years. In general, these systems have infinitely many solutions. However, it may be shown that sufficiently sparse solutions may be identified uniquely. In other words, the corresponding linear transformation will be invertible if we restrict its domain to sufficiently sparse vectors. This property may be used, for example, to solve the underdetermined Blind Source Separation (BSS) problem, or to find sparse representation of a signal in an `overcomplete dictionary of primitive elements (i.e., the so-called atomic decomposition). The main drawback of current methods of finding sparse solutions is their computational complexity. In this paper, we will show that by detecting `active components of the (potential) solution, i.e., those components having a considerable value, a framework for fast solution of the problem may be devised. The idea leads to a family of algorithms, called `Iterative Detection-Estimation (IDE), which converge to the solution by successive detection and estimation of its active part. Comparing the performance of IDE(s) with one of the most successful method to date, which is based on Linear Programming (LP), an improvement in speed of about two to three orders of magnitude is observed.
We consider online change detection of high dimensional data streams with sparse changes, where only a subset of data streams can be observed at each sensing time point due to limited sensing capacities. On the one hand, the detection scheme should b
Iterative hard thresholding (IHT) is a projected gradient descent algorithm, known to achieve state of the art performance for a wide range of structured estimation problems, such as sparse inference. In this work, we consider IHT as a solution to th
We consider the class of convex minimization problems, composed of a self-concordant function, such as the $logdet$ metric, a convex data fidelity term $h(cdot)$ and, a regularizing -- possibly non-smooth -- function $g(cdot)$. This type of problems
We address two shortcomings in online travel time estimation methods for congested urban traffic. The first shortcoming is related to the determination of the number of mixture modes, which can change dynamically, within day and from day to day. The
In this paper, we consider the Graphical Lasso (GL), a popular optimization problem for learning the sparse representations of high-dimensional datasets, which is well-known to be computationally expensive for large-scale problems. Recently, we have