ﻻ يوجد ملخص باللغة العربية
All galaxies without a radio-loud AGN follow a tight correlation between their global FIR and radio synchrotron luminosities, which is believed to be ultimately the result of the formation of massive stars. Two colliding pairs of galaxies, UGC12914/5 and UGC 813/6 deviate from this correlation and show an excess of radio emission which in both cases originates to a large extent in a gas bridge connecting the two galactic disks. We are aiming to clarify the origin of the radio continuum emission from the bridge. The radio synchrotron emission expected from the bridge regions is calculated, assuming that the kinetic energy liberated in the predominantly gas dynamic interaction of the respective interstellar media (ISM) has produced shock waves that efficiently accelerate nuclei and electrons to relativistic energies. We present a model for this acceleration and calculate the resulting radio emission, its spectral index and the expected high-energy gamma-ray emission. It is found that the nonthermal energy produced in the collision is large enough to explain the radio emission from the bridge between the two galaxies. The calculated spectral index at the present time also agrees with the observed value. The deviation of these two interacting galaxy systems from the standard FIR-radio correlation is consistent with the acceleration of an additional population of electrons. This process is not related to star formation and therefore it is expected that the systems do not follow the FIR-radio correlation. The acceleration of relativistic electrons in shocks caused by an ISM collision, in the same way as described here, is likely to take place in other systems as well, as in galaxy clusters and groups or high-redshift systems.
An extreme case of electron shock drift acceleration in low Mach number collisionless shocks is investigated as a plausible mechanism of initial acceleration of relativistic electrons in large-scale shocks in galaxy clusters where upstream plasma tem
This paper summarizes recent progresses in our theoretical understanding of particle acceleration at relativistic shock waves and it discusses two salient consequences: (1) the maximal energy of accelerated particles; (2) the impact of the shock-gene
An acceleration scale of order $10^{-10}mathrm{m/s^2}$ is implicit in the baryonic Tully-Fisher and baryonic Faber-Jackson relations, independently of any theoretical preference or bias. We show that the existence of this scale in the baryonic Faber-
We review the possible roles of large scale shocks as particle accelerators in clusters of galaxies. Recent observational and theoretical work has suggested that high energy charged particles may constitute a substantial pressure component in cluster
A number of theoretical and simulation results on star and structure formation in galaxy interactions and mergers is reviewed, and recent hydrodynamic simulations are presented. The role of gravity torques and ISM turbulence in galaxy interactions, i