ترغب بنشر مسار تعليمي؟ اضغط هنا

Star formation and structure formation in galaxy collisions

144   0   0.0 ( 0 )
 نشر من قبل Frederic Bournaud
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Frederic Bournaud




اسأل ChatGPT حول البحث

A number of theoretical and simulation results on star and structure formation in galaxy interactions and mergers is reviewed, and recent hydrodynamic simulations are presented. The role of gravity torques and ISM turbulence in galaxy interactions, in addition to the tidal field, is highlighted. Interactions can drive gas inflows towards the central kpc and trigger a central starburst, the intensity and statistical properties of which are discussed. A kinematically decoupled core and a supermassive central black hole can be fueled. Outside of the central kpc, many structures can form inside tidal tails, collisional ring, bridges, including super star clusters and tidal dwarf galaxies. The formation of super star clusters in galaxy mergers can now be directly resolved in hydrodynamic simulations. Their formation mechanisms and long-term evolution are reviewed, and the connection with present-day early-type galaxies is discussed.



قيم البحث

اقرأ أيضاً

162 - Frederic Bournaud 2011
This lecture reviews the fundamental physical processes involved in star formation in galaxy interactions and mergers. Interactions and mergers often drive intense starbursts, but the link between interstellar gas physics, large scale interactions, a nd active star formation is complex and not fully understood yet. Two processes can drive starbursts: radial inflows of gas can fuel nuclear starbursts, triggered gas turbulence and fragmentation can drive more extended starbursts in massive star clusters with high fractions of dense gas. Both modes are certainly required to account for the observed properties of starbursting mergers. A particular consequence is that star formation scaling laws are not universal, but vary from quiescent disks to starbursting mergers. High-resolution hydrodynamic simulations are used to illustrate the lectures.
We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey (SDSS). Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 +/- 0.007) is higher than that in single-component clusters (0.175 +/- 0.016) for galaxies with M^0.1_r < -20.5. In both single- and multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2 sigma, correlations between substructure and SF fraction. These results could indicate that cluster mergers may cause weak but significant SF enhancement in clusters, or unrelaxed clusters exhibit slightly stronger SF due to their less evolved states relative to relaxed clusters.
259 - M. Kuhlen , M. Krumholz , P. Madau 2011
We describe cosmological galaxy formation simulations with the adaptive mesh refinement code Enzo that incorporate a star formation prescription regulated by the local abundance of molecular hydrogen. We show that this H2-regulated prescription leads to a suppression of star formation in low mass halos (M_h < ~10^10 M_sun) at z>4, alleviating some of the dwarf galaxy problems faced by theoretical galaxy formation models. H2 regulation modifies the efficiency of star formation of cold gas directly, rather than indirectly reducing the cold gas content with supernova feedback. We determine the local H2 abundance in our most refined grid cells (76 proper parsec in size at z=4) by applying the model of Krumholz, McKee, & Tumlinson, which is based on idealized 1D radiative transfer calculations of H2 formation-dissociation balance in ~100 pc atomic--molecular complexes. Our H2-regulated simulations are able to reproduce the empirical (albeit lower z) Kennicutt-Schmidt relation, including the low Sigma_gas cutoff due to the transition from atomic to molecular phase and the metallicity dependence thereof, without the use of an explicit density threshold in our star formation prescription. We compare the evolution of the luminosity function, stellar mass density, and star formation rate density from our simulations to recent observational determinations of the same at z=4-8 and find reasonable agreement between the two.
We analyze the star formation properties of 16 infrared-selected, spectroscopically confirmed galaxy clusters at $1 < z < 1.5$ from the Spitzer/IRAC Shallow Cluster Survey (ISCS). We present new spectroscopic confirmation for six of these high-redshi ft clusters, five of which are at $z>1.35$. Using infrared luminosities measured with deep Spitzer/MIPS observations at 24 $mu$m, along with robust optical+IRAC photometric redshifts and SED-fitted stellar masses, we present the dust-obscured star-forming fractions, star formation rates and specific star formation rates in these clusters as functions of redshift and projected clustercentric radius. We find that $zsim 1.4$ represents a transition redshift for the ISCS sample, with clear evidence of an unquenched era of cluster star formation at earlier times. Beyond this redshift the fraction of star-forming cluster members increases monotonically toward the cluster centers. Indeed, the specific star formation rate in the cores of these distant clusters is consistent with field values at similar redshifts, indicating that at $z>1.4$ environment-dependent quenching had not yet been established in ISCS clusters. Combining these observations with complementary studies showing a rapid increase in the AGN fraction, a stochastic star formation history, and a major merging episode at the same epoch in this cluster sample, we suggest that the starburst activity is likely merger-driven and that the subsequent quenching is due to feedback from merger-fueled AGN. The totality of the evidence suggests we are witnessing the final quenching period that brings an end to the era of star formation in galaxy clusters and initiates the era of passive evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا