ﻻ يوجد ملخص باللغة العربية
In this Letter we present resonance properties in terahertz metamaterials consisting of a split-ring resonator array made from high temperature superconducting films. By varying the temperature, we observed efficient metamaterial resonance switching and frequency tuning with some features not revealed before. The results were well reproduced by numerical simulations of metamaterial resonance using the experimentally measured complex conductivity of the superconducting film. We developed a theoretical model that explains the tuning features, which takes into account the resistive resonance damping and additional split-ring inductance contributed from both the real and imaginary parts of the temperature-dependent complex conductivity. The theoretical model further predicted more efficient resonance switching and frequency shifting in metamaterials consisting of a thinner superconducting split-ring resonator array, which were also verified in experiments.
Contrary to what might be expected, when an organic dye is sputtered onto an opaque holey metal film, transmission bands can be observed at the absorption energies of the molecules. This phenomenon, known as absorption-induced transparency, is aided
Superconducting thin-film metamaterial resonators can provide a dense microwave mode spectrum with potential applications in quantum information science. We report on the fabrication and low-temperature measurement of metamaterial transmission-line r
Superconducting metamaterials are utilized to study the approach to the plasmonic limit simply by tuning temperature to modify the superfluid density, and thus the superfluid plasma frequency. We examine the persistence of artificial magnetism in a m
Superconducting resonators interfaced with paramagnetic spin ensembles are used to increase the sensitivity of electron spin resonance experiments and are key elements of microwave quantum memories. Certain spin systems that are promising for such qu
We present an inelastic neutron scattering study of the structurally simple single-layer compound HgBa$_2$CuO$_{4+delta}$ close to optimal doping ($T_c approx 96$ K). A well-defined antiferromagnetic resonance with energy $omega_r = 56$ meV ($approx