ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning high-Q superconducting resonators by magnetic field reorientation

88   0   0.0 ( 0 )
 نشر من قبل Christoph Zollitsch
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconducting resonators interfaced with paramagnetic spin ensembles are used to increase the sensitivity of electron spin resonance experiments and are key elements of microwave quantum memories. Certain spin systems that are promising for such quantum memories possess sweet spots at particular combinations of magnetic fields and frequencies, where spin coherence times or linewidths become particularly favorable. In order to be able to couple high-Q superconducting resonators to such specific spin transitions, it is necessary to be able to tune the resonator frequency under a constant magnetic field amplitude. Here, we demonstrate a high quality, magnetic field resilient superconducting resonator, using a 3D vector magnet to continuously tune its resonance frequency by adjusting the orientation of the magnetic field. The resonator maintains a quality factor of $> 10^5$ up to magnetic fields of 2.6 T, applied predominantly in the plane of the superconductor. We achieve a continuous tuning of up to 30 MHz by rotating the magnetic field vector, introducing a component of 5 mT perpendicular to the superconductor.



قيم البحث

اقرأ أيضاً

We describe an experimental protocol to characterize magnetic field dependent microwave losses in superconducting niobium microstrip resonators. Our approach provides a unified view that covers two well-known magnetic field dependent loss mechanisms: quasiparticle generation and vortex motion. We find that quasiparticle generation is the dominant loss mechanism for parallel magnetic fields. For perpendicular fields, the dominant loss mechanism is vortex motion or switches from quasiparticle generation to vortex motion, depending on cooling procedures. In particular, we introduce a plot of the quality factor versus the resonance frequency as a general method for identifying the dominant loss mechanism. We calculate the expected resonance frequency and the quality factor as a function of the magnetic field by modeling the complex resistivity. Key parameters characterizing microwave loss are estimated from comparisons of the observed and expected resonator properties. Based on these key parameters, we find a niobium resonator whose thickness is similar to its penetration depth is the best choice for X-band electron spin resonance applications. Finally, we detect partial release of the Meissner current at the vortex penetration field, suggesting that the interaction between vortices and the Meissner current near the edges is essential to understand the magnetic field dependence of the resonator properties.
323 - J. E. Healey 2008
We describe measurements on microwave coplanar resonators designed for quantum bit experiments. Resonators have been patterned onto sapphire and silicon substrates, and quality factors in excess of a million have been observed. The resonant frequency shows a high sensitivity to magnetic field applied perpendicular to the plane of the film, with a quadratic dependence for the fundamental, second and third harmonics. Frequency shift of hundreds of linewidths can be obtained.
481 - K. Borisov , D. Rieger , P. Winkel 2020
High kinetic inductance materials constitute a valuable resource for superconducting quantum circuits and hybrid architectures. Superconducting granular aluminum (grAl) reaches kinetic sheet inductances in the nH/$square$ range, with proven applicabi lity in superconducting quantum bits and microwave detectors. Here we show that the single photon internal quality factor $Q_{mathrm{i}}$ of grAl microwave resonators exceeds $10^5$ in magnetic fields up to 1T, aligned in-plane to the grAl films. Small perpendicular magnetic fields, in the range of 0.5mT, enhance $Q_{mathrm{i}}$ by approximately 15%, possibly due to the introduction of quasiparticle traps in the form of fluxons. Further increasing the perpendicular field deteriorates the resonators quality factor. These results open the door for the use of high kinetic inductance grAl structures in circuit quantum electrodynamics and hybrid architectures with magnetic field requirements.
We introduce a microwave circuit architecture for quantum signal processing combining design principles borrowed from high-Q 3D resonators in the quantum regime and from planar structures fabricated with standard lithography. The resulting 2.5D whisp ering-gallery mode resonators store 98% of their energy in vacuum. We have measured internal quality factors above 3 million at the single photon level and have used the device as a materials characterization platform to place an upper bound on the surface resistance of thin film aluminum of less than 250nOhms.
In this work, we find that Al cladding on Nb microstrip resonators is an efficient way to suppress nonlinear responses induced by local Joule heating, resulting in improved microwave power handling capability. This improvement is likely due to the pr oximity effect between the Al and the Nb layers. The proximity effect is found to be controllable by tuning the thickness of the Al layer. We show that improving the film quality is also helpful as it enhances the microwave critical current density, but it cannot eliminate the local heating.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا