ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase diagram of spin-1/2 bosons in one-dimensional optical lattice

286   0   0.0 ( 0 )
 نشر من قبل George Batrouni
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Systems of two coupled bosonic species are studied using Mean Field Theory and Quantum Monte Carlo. The phase diagram is characterized both based on the mobility of the particles (Mott insulating or superfluid) and whether or not the system is magnetic (different populations for the two species). The phase diagram is shown to be population balanced for negative spin-dependent interactions, regardless of whether it is insulating or superfluid. For positive spin-dependent interactions, the superfluid phase is always polarized, the two populations are imbalanced. On the other hand, the Mott insulating phase with even commensurate filling has balanced populations while the odd commensurate filling Mott phase has balanced populations at very strong interaction and polarizes as the interaction gets weaker while still in the Mott phase.



قيم البحث

اقرأ أيضاً

We study a two-species bosonic Hubbard model on a two-dimensional square lattice by means of quantum Monte Carlo simulations and focus on finite temperature effects. We show in two different cases, ferro- and antiferromagnetic spin-spin interactions, that the phase diagram is composed of solid Mott phases, liquid phases and superfluid phases. In the antiferromagnetic case, the superfluid (SF) is polarized while the Mott insulator (MI) and normal Bose liquid (NBL) phases are not. On the other hand, in the ferromagnetic case, none of the phases is polarized. The superfluid-liquid transition is of the Berezinsky-Kosterlitz-Thouless type whereas the solid-liquid passage is a crossover.
We work out two different analytical methods for calculating the boundary of the Mott-insulator-superfluid (MI-SF) quantum phase transition for scalar bosons in cubic optical lattices of arbitrary dimension at zero temperature which improve upon the seminal mean-field result. The first one is a variational method, which is inspired by variational perturbation theory, whereas the second one is based on the field-theoretic concept of effective potential. Within both analytical approaches we achieve a considerable improvement of the location of the MI-SF quantum phase transition for the first Mott lobe in excellent agreement with recent numerical results from Quantum Monte-Carlo simulations in two and three dimensions. Thus, our analytical results for the whole quantum phase diagram can be regarded as being essentially exact for all practical purposes.
We study, using quantum Monte Carlo (QMC) simulations, the ground state properties of spin-1 bosons trapped in a square optical lattice. The phase diagram is characterized by the mobility of the particles (Mott insulating or superfluid phase) and by their magnetic properties. For ferromagnetic on-site interactions, the whole phase diagram is ferromagnetic and the Mott insulators-superfluid phase transitions are second order. For antiferromagnetic on-site interactions, spin nematic order is found in the odd Mott lobes and in the superfluid phase. Furthermore, the superfluid-insulator phase transition is first or second order depending on whether the density in the Mott is even or odd. Inside the even Mott lobes, we observe a singlet-to-nematic transition for certain values of the interactions. This transition appears to be first order.
107 - Florian Lange , Satoshi Ejima , 2019
We investigate the spin-2 chain model corresponding to the small hopping limit of the spin-2 Bose-Hubbard model using density-matrix renormalization-group and time-evolution techniques. We calculate both static correlation functions and the dynamic s tructure factor. The dynamic structure factor in the dimerized phase differs significantly between parameters near the SU(5)-symmetric point and those deeper in the phase where the dimerization is strong. In the former case, most of the spectral weight is concentrated in a single excitation line, while in the latter case, a broad excitation continuum shows up. For the trimerized phase, we find gapless excitations at momenta $k=pm2pi/3$ in agreement with previous results, although the visibility of these excitations in the dynamic spin response depends strongly on the specific parameters. We also consider parameters for specific atoms which may be relevant for future optical-lattice experiments.
143 - Yi Liao , Xiao-Bo Gong , Chu Guo 2019
In this paper, we determine the geometric phase for the one-dimensional $XXZ$ Heisenberg chain with spin-$1/2$, the exchange couple $J$ and the spin anisotropy parameter $Delta$ in a longitudinal field(LF) with the reduced field strength $h$. Using t he Jordan-Wigner transformation and the mean-field theory based on the Wicks theorem, a semi-analytical theory has been developed in terms of order parameters which satisfy the self-consistent equations. The values of the order parameters are numerically computed using the matrix-product-state(MPS) method. The validity of the mean-filed theory could be checked through the comparison between the self-consistent solutions and the numerical results. Finally, we draw the the topological phase diagrams in the case $J<0$ and the case $J>0$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا