ﻻ يوجد ملخص باللغة العربية
We work out two different analytical methods for calculating the boundary of the Mott-insulator-superfluid (MI-SF) quantum phase transition for scalar bosons in cubic optical lattices of arbitrary dimension at zero temperature which improve upon the seminal mean-field result. The first one is a variational method, which is inspired by variational perturbation theory, whereas the second one is based on the field-theoretic concept of effective potential. Within both analytical approaches we achieve a considerable improvement of the location of the MI-SF quantum phase transition for the first Mott lobe in excellent agreement with recent numerical results from Quantum Monte-Carlo simulations in two and three dimensions. Thus, our analytical results for the whole quantum phase diagram can be regarded as being essentially exact for all practical purposes.
We present an analytic description of the finite-temperature phase diagram of the Bose-Hubbard model, successfully describing the physics of cold bosonic atoms trapped in optical lattices and superlattices. Based on a standard statistical mechanics a
Systems of two coupled bosonic species are studied using Mean Field Theory and Quantum Monte Carlo. The phase diagram is characterized both based on the mobility of the particles (Mott insulating or superfluid) and whether or not the system is magnet
In this paper we study the superfluid-Mott-insulator phase transition of ultracold dilute gas of bosonic atoms in an optical lattice by means of Green function method and Bogliubov transformation as well. The superfluid- Mott-insulator phase transiti
We studied the superfluid-to-Mott insulator transition for bosonic hard spheres loaded in asymmetric three-dimensional optical lattices by means of diffusion Monte Carlo calculations. The onset of the transition was monitored through the change in th
When a quantum many-particle system exists on a randomly diluted lattice, its intrinsic thermal and quantum fluctuations coexist with geometric fluctuations due to percolation. In this paper, we explore how the interplay of these fluctuations influen