ﻻ يوجد ملخص باللغة العربية
Graphene, a monolayer of carbon atoms arranged in a hexagonal pattern, provides a unique two-dimensional (2D) system exhibiting exotic phenomena such as quantum Hall effects, massless Dirac quasiparticle excitations and universal absorption & conductivity. The linear energy-momentum dispersion relation in graphene also offers the opportunity to mimic the physics of far-away relativistic particles like neutron stars and white dwarfs. In this letter, we perform a counterintuitive ultrafast pump-probe experiment with high photon energies to isolate the Drude-like intraband dynamics of photoexcited carriers. We directly demonstrate the relativistic nature of the photoexcited Dirac quasiparticles by observing a nonlinear scaling of the response with the density of photoexcited carriers. This is in striking contrast to the linear scaling that is usually observed in conventional materials. Our results also indicate strong electron-phonon coupling in graphene, leading to a sub-100 femtosecond thermalization between high energy photoexcited carriers and optical phonons.
Quantum confinement of graphene Dirac-like electrons in artificially crafted nanometer structures is a long sought goal that would provide a strategy to selectively tune the electronic properties of graphene, including bandgap opening or quantization
The diffusion of electron-hole pairs, which are excited in an intrinsic graphene by the ultrashort focused laser pulse in mid-IR or visible spectral region, is described for the cases of peak-like or spread over the passive region distributions of ca
The response of Dirac fermions to a Coulomb potential is predicted to differ significantly from the behavior of non-relativistic electrons seen in traditional atomic and impurity systems. Surprisingly, many key theoretical predictions for this ultra-
When light is absorbed by a semiconductor, photoexcited charge carriers enhance the absorption of far-infrared radiation due to intraband transitions. We observe the opposite behavior in monolayer graphene, a zero-gap semiconductor with linear disper
For most optoelectronic applications of graphene a thorough understanding of the processes that govern energy relaxation of photoexcited carriers is essential. The ultrafast energy relaxation in graphene occurs through two competing pathways: carrier