ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep H{alpha} Observations of NGC 253: a Very Extended and Possibly Declining Rotation Curve?

89   0   0.0 ( 0 )
 نشر من قبل Julie Hlavacek-Larrondo
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This study presents a deep H{alpha} kinematical analysis of the Sculptor Group galaxy NGC253. The Fabry-Perot data were taken with the 36-cm Marseille Telescope in La Silla, Chile, using an EMCCD detector. Typical emission measures of ~0.1 cm^-6 pc are reached. The observations allow the detection of the Diffuse Ionized Gas component through [N II] emission at very large radii of 11.5, 12.8 and 19.0, on the receding side of the galaxy. No H{alpha} emission is observed at radii larger than the neutral component (11.5). The very extended rotation curve confirms previous results and shows signs of a significant decline, on the order of 30 per cent vmax . Using the rotation data, mass models are constructed with and without the outer [N II] data points, and similar results are found. The declining part of the rotation curve is very well modeled, and seems to be truly declining.



قيم البحث

اقرأ أيضاً

93 - I. Dicaire 2008
Deep Halpha observations of the Sculptor Group galaxy NGC 7793 were obtained on the ESO 3.60m and the Marseille 36cm telescopes at La Silla, Chile. Halpha emission is detected all the way to the edge of the HI disk, making of the HII disk of NGC 7793 one of the largest ever observed in a quiet non-AGN late-type system. Even in the very outer parts, the HII ionizing sources are probably mainly internal (massive stars in the disk) with an unlikely contribution from the extragalactic ionizing background. The Halpha kinematics confirms what had already been seen with the HI observations: NGC 7793 has a truly declining rotation curve. However, the decline is not Keplerian and a dark halo is still needed to explain the rotation velocities in the outer parts.
181 - P. Salome , F. Combes , Y. Revaz 2011
We present the first detection of CO emission lines in the Halpha filaments at distances as far as 50 kpc from the centre of the galaxy NGC 1275. This gas is probably dense (>=10E3 cm-3). However, it is not possible to accurately determine the densit y and the kinetic temperature of this relatively warm gas (Tkin~20-500K) with the current data only. The amount of molecular gas in the filaments is large 10E9 Msun (assuming a Galactic N(H2)/Ico ratio). This is 10% of the total mass of molecular gas detected in this cD galaxy. This gas has large-scale velocities comparable to those seen in Halpha. The origin of the filaments is still unclear, but their formation is very likely linked to the AGN positive feedback (Revaz et al., 2008) that regulates the cooling of the surrounding X-ray-emitting gas as suggested by numerical simulations. We also present high-resolution spectra of the galaxy core. The spatial characteristics of the double-peaked profile suggest that the molecular web of filaments and streamers penetrates down to radii of less than 2 kpc from the central AGN and eventually feed the galaxy nucleus. The mass of gas inside the very central region is ~10E^9 Msun, and is similar to the mass of molecular gas found in the filaments.
140 - Jeremy Bailin 2011
We have obtained Magellan/IMACS and HST/ACS imaging data that resolve red giant branch stars in the stellar halo of the starburst galaxy NGC 253. The HST data cover a small area, and allow us to accurately interpret the ground-based data, which cover 30% of the halo to a distance of 30 kpc, allowing us to make detailed quantitative measurements of the global properties and structure of a stellar halo outside of the Local Group. The geometry of the halo is significantly flattened in the same sense as the disk, with a projected axis ratio of b/a ~ 0.35 +/- 0.1. The total stellar mass of the halo is estimated to be M_halo ~ 2.5 +/- 1.5 x 10^9 M_sun, or 6% of the total stellar mass of the galaxy, and has a projected radial dependence that follows a power law of index -2.8 +/- 0.6, corresponding to a three-dimensional power law index of ~ -4. The total luminosity and profile shape that we measure for NGC 253 are somewhat larger and steeper than the equivalent values for the Milky Way and M31, but are well within the scatter of model predictions for the properties of stellar halos built up in a cosmological context. Structure within the halo is seen at a variety of scales: there is small kpc-scale density variation and a large shelf-like feature near the middle of the field. The techniques that have been developed will be essential for quantitatively comparing our upcoming larger sample of observed stellar halos to models of halo formation.
132 - J. Holdship , S. Viti , S. Martin 2021
Observations of chemical species can provide an insight into the physical conditions of the emitting gas but it is important to understand how their abundances and excitation vary within different heating environments. C$_2$H is a molecule typically found in PDR regions of our own Galaxy but there is evidence to suggest it also traces other regions undergoing energetic processing in extragalactic environments. As part of the ALCHEMI ALMA large program, the emission of C$_2$H in the central molecular zone of the nearby starburst galaxy NGC 253 was mapped at 1.6 (28 pc) resolution and characterized to understand its chemical origins. Spectral modelling of the N=1-0 through N=4-3 rotational transitions of C$_2$H was used to derive the C$_2$H column densities towards the dense clouds in NGC 253. Chemical modelling, including PDR, dense cloud, and shock models were then used to investigate the chemical processes and physical conditions that are producing the molecular emission. We find high C$_2$H column densities of $sim 10^{15} cm^{-3}$ detected towards the dense regions of NGC 253. We further find that these column densities cannot be reproduced by assuming that the emission arises from the PDR regions at the edge of the clouds. Instead, we find that the C$_2$H abundance remains high even in the high visual extinction interior of these clouds and that this is most likely caused by a high cosmic-ray ionization rate.
We have obtained H$alpha$ high spatial and time resolution observations of the upper solar chromosphere and supplemented these with multi-wavelength observations from the Solar Dynamic Observatory (SDO) and the {it Hinode} ExtremeUltraviolet Imaging Spectrometer (EIS). The H$alpha$ observations were conducted on 11 February 2012 with the Hydrogen-Alpha Rapid Dynamics Camera (HARDcam) instrument at the National Solar Observatorys Dunn Solar Telescope. Our H$alpha$ observations found large downflows of chromospheric material returning from coronal heights following a failed prominence eruption. We have detected several large condensations (blobs) returning to the solar surface at velocities of $approx$200 km s$^{-1}$ in both H$alpha$ and several SDO AIA band passes. The average derived size of these blobs in H$alpha$ is 500 by 3000 km$^2$ in the directions perpendicular and parallel to the direction of travel, respectively. A comparison of our blob widths to those found from coronal rain, indicate there are additional smaller, unresolved blobs in agreement with previous studies and recent numerical simulations. Our observed velocities and decelerations of the blobs in both H$alpha$ and SDO bands are less than those expected for gravitational free-fall and imply additional magnetic or gas pressure impeding the flow. We derived a kinetic energy $approx$2 orders of magnitude lower for the main eruption than a typical CME, which may explain its partial nature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا