ﻻ يوجد ملخص باللغة العربية
We have obtained Magellan/IMACS and HST/ACS imaging data that resolve red giant branch stars in the stellar halo of the starburst galaxy NGC 253. The HST data cover a small area, and allow us to accurately interpret the ground-based data, which cover 30% of the halo to a distance of 30 kpc, allowing us to make detailed quantitative measurements of the global properties and structure of a stellar halo outside of the Local Group. The geometry of the halo is significantly flattened in the same sense as the disk, with a projected axis ratio of b/a ~ 0.35 +/- 0.1. The total stellar mass of the halo is estimated to be M_halo ~ 2.5 +/- 1.5 x 10^9 M_sun, or 6% of the total stellar mass of the galaxy, and has a projected radial dependence that follows a power law of index -2.8 +/- 0.6, corresponding to a three-dimensional power law index of ~ -4. The total luminosity and profile shape that we measure for NGC 253 are somewhat larger and steeper than the equivalent values for the Milky Way and M31, but are well within the scatter of model predictions for the properties of stellar halos built up in a cosmological context. Structure within the halo is seen at a variety of scales: there is small kpc-scale density variation and a large shelf-like feature near the middle of the field. The techniques that have been developed will be essential for quantitatively comparing our upcoming larger sample of observed stellar halos to models of halo formation.
We present deep ACS images of 3 fields in the edge-on disk galaxy NGC 891, which extend from the plane of the disk to 12 kpc, and out to 25 kpc along the major axis. The photometry of individual stars reaches 2.5 magnitudes below the tip of the RGB.
The under-abundance of very massive galaxies in the universe is frequently attributed to the effect of galactic winds. Although ionized galactic winds are readily observable most of the expelled mass is likely in cooler atomic and molecular phases. E
We present the results of integral-field spectroscopic observations of the two disk galaxies NGC 3593 and NGC 4550 obtained with VIMOS/VLT. Both galaxies are known to host 2 counter-rotating stellar disks, with the ionized gas co-rotating with one of
NGC 5128 (Centaurus A) is, at the distance of just 3.8 Mpc, the nearest easily observable giant elliptical galaxy. Therefore it is the best target to investigate the early star formation history of an elliptical galaxy. Our aims are to establish when
We contend that a single power law halo mass distribution is appropriate for direct matching to the stellar masses of observed Local Group dwarf galaxies, allowing the determination of the slope of the stellar mass-halo mass relation for low mass gal