ترغب بنشر مسار تعليمي؟ اضغط هنا

Second Homologous Series of Iron Pnictide Oxide Superconductors (Fe2As2)(Can+2(Al,Ti)nOy)[n = 2,3,4]

159   0   0.0 ( 0 )
 نشر من قبل Hiraku Ogino Dr.
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have discovered a new homologous series of iron pnictide oxides (Fe2As2)(Can+2(Al,Ti)nOy)[n = 2,3,4]. These compounds have perovskite-like blocking layers between Fe2As2 layers. The structure of new compounds are tetragonal with space groups of P4/nmm for n = 2 and 4 and P4mm for n = 3, which are similar to those of (Fe2As2)(Can+1(Sc,Ti)nOy)[n = 3,4,5] found in our previous study. Compounds with n = 3 and 4 have new crystal structures with 3 and 4 sheets of perovskite layers, respectively, including a rock salt layer in each blocking layer. The a-axis lengths of the three compounds are approximately 3.8 A, which are close to those of FeSe and LiFeAs. (Fe2As2)(Ca6(Al,Ti)4Oy) exhibited bulk superconductivity in magnetization measurement with Tc(onset)~36 K and resistivity drop was observed at ~39 K. (Fe2As2)(Ca5(Al,Ti)3Oy) also showed large diamagnetism at low temperatures. These new compounds indicate considerable rooms are still remaining for new superconductors in layered iron pnictides.



قيم البحث

اقرأ أيضاً

We have discovered first homologous series of iron pnictide oxide superconductors (Fe2As2)(Can+1(Sc,Ti)nOy) [n = 3,4,5]. These compounds have extremely thick blocking layers up to quintuple perovskite oxide layers sandwiched by the Fe2As2 layers. The se samples exhibited bulk superconductivity with relatively high Tc up to 42 K. The relationship between Tc and the iron-plane interlayer distance suggested that superconductivity due to the mono Fe2As2 layer is substantially 40 K-class.
A new layered iron arsenide oxide (Fe2As2)(Ca5(Mg,Ti)4Oy) and its structural derivative were found in the Fe-As-Ca-Mg-Ti-O system. The crystal structure of (Fe2As2)(Ca5(Mg,Ti)4Oy) is identical to that of (Fe2As2)(Ca5(Sc,Ti)4Oy), which was reported in our previous study. The lattice constants of this compound are a = 3.86(4) A and c = 41.05(2) A. In addition, another phase with a thicker blocking layer was found. The structure of the compound and its derivative was tentatively assigned through STEM observation as (Fe2As2)(Ca8(Mg,Ti)6Oy) with sextuple perovskite-type sheets divided by a rock salt layer. The interlayer Fe-Fe distance of this compound is ~30 A. The compound and its derivative exhibited bulk superconductivity, as found from magnetization and resistivity measurements.
We synthesized new layered iron arsenide oxides (Fe2As2)(Sr4(Sc,Ti)3O8),(Fe2As2)(Ba4Sc3O7.5), and (Fe2As2)(Ba3Sc2O5). The crystal structures of these compounds are tetragonal with a space group of I4/mmm. The structure of (Fe2As2)(Sr4(Sc,Ti)3O8) and (Fe2As2)(Ba4Sc3O7.5) consists of the alternate stacking of antifluorite Fe2As2 layers and triple perovskite-type oxide layers. The interlayer distance between the Fe planes of (Fe2As2)(Ba4Sc3O7.5) is ~18.7 A. Moreover, the a-axis of (Fe2As2)(Ba3Sc2O5) is the longest among the layered iron pnictides, indicating the structural flexibility of the layered iron pnictide containing perovskite-type layers. The bulk sample of (Fe2As2)(Sr4(Sc0.6Ti0.4)3O8) exhibited diamagnetism up to 28 K in susceptibility measurements.
172 - H. Ogino , S. Sato , Y. Matsumura 2010
Structural features of newly found perovskite-based iron pnictide oxide system have been systematically studied. Compared to REFePnO system, perovskite-based system tend to have lower Pn-Fe-Pn angle and higher pnictogen height owing to low electroneg ativity of alkaline earth metal and small repulsive force between pnictogen and oxygen atoms. As-Fe-As angles of (Fe2As2)(Sr4Cr2O6), (Fe2As2)(Sr4V2O6) and (Fe2Pn2)(Sr4MgTiO6) are close to ideal tetrahedron and those pnictogen heights of about 1.40 A are close to NdFeAsO with optimized carrier concentration. These structural features of this system may leads to realization of high Tc superconductivity.
A new layered iron arsenide oxide (Fe2As2)(Ca4(Mg,Ti)3Oy) was discovered. Its crystal structure is tetragonal with a space group of I4/mmm consisted of the anti-fluorite type FeAs layer and blocking layer of triple perovskite cells and is identical w ith (Fe2As2)(Sr4(Sc,Ti)3O8) discovered in our previous study. The lattice constants of (Fe2As2)(Ca4(Mg,Ti)3Oy) are a = 3.877 A and c = 33.37 A. This compound exhibited bulk superconductivity up to 43 K in susceptibility measurement without intentional carrier doping. A resistivity drop was observed at ~47 K and zero resistance was achieved at 42 K. These values correspond to the second highest Tc among the layered iron-based superconductors after REFeAsO system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا