ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural Features of Layered Iron Pnictide Oxides (Fe2As2)(Sr4M2O6)

173   0   0.0 ( 0 )
 نشر من قبل Hiraku Ogino Dr.
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Structural features of newly found perovskite-based iron pnictide oxide system have been systematically studied. Compared to REFePnO system, perovskite-based system tend to have lower Pn-Fe-Pn angle and higher pnictogen height owing to low electronegativity of alkaline earth metal and small repulsive force between pnictogen and oxygen atoms. As-Fe-As angles of (Fe2As2)(Sr4Cr2O6), (Fe2As2)(Sr4V2O6) and (Fe2Pn2)(Sr4MgTiO6) are close to ideal tetrahedron and those pnictogen heights of about 1.40 A are close to NdFeAsO with optimized carrier concentration. These structural features of this system may leads to realization of high Tc superconductivity.



قيم البحث

اقرأ أيضاً

We have discovered new layered oxyarsenides (Fe2As2)(Sr4M2O6) (M = Sc, Cr: M-22426). These materials are isostructural with (Fe2P2)(Sr4Sc2O6), which was found in our previous study. The new compounds are tetragonal with a space group of P4/nmm and co nsist of the anti-fluorite type FeAs layer and perovskite-type blocking layer. The lattice constants are a = 4.050 A, c = 15.809 A for M = Sc and a = 3.918 A, c = 15.683 A for M = Cr. These compounds have long interlayer Fe-Fe distances corresponding to the c-axis length, the 15.8 A in Sc-22426 is the longest in the iron-based oxypnictide systems. Chemical flexibility of the perovskite block in this system was probed by chromium containing (Fe2As2)(Sr4Cr2O6). Different trends were found in bond angle and bond length of the new oxypnictides compared to the reported systems, such as REFePnO. Absence of superconductivity in these compounds is considered to be due to insufficient carrier concentration as in the case of undoped REFeAsO.
We synthesized new layered iron arsenide oxides (Fe2As2)(Sr4(Sc,Ti)3O8),(Fe2As2)(Ba4Sc3O7.5), and (Fe2As2)(Ba3Sc2O5). The crystal structures of these compounds are tetragonal with a space group of I4/mmm. The structure of (Fe2As2)(Sr4(Sc,Ti)3O8) and (Fe2As2)(Ba4Sc3O7.5) consists of the alternate stacking of antifluorite Fe2As2 layers and triple perovskite-type oxide layers. The interlayer distance between the Fe planes of (Fe2As2)(Ba4Sc3O7.5) is ~18.7 A. Moreover, the a-axis of (Fe2As2)(Ba3Sc2O5) is the longest among the layered iron pnictides, indicating the structural flexibility of the layered iron pnictide containing perovskite-type layers. The bulk sample of (Fe2As2)(Sr4(Sc0.6Ti0.4)3O8) exhibited diamagnetism up to 28 K in susceptibility measurements.
We have discovered a new homologous series of iron pnictide oxides (Fe2As2)(Can+2(Al,Ti)nOy)[n = 2,3,4]. These compounds have perovskite-like blocking layers between Fe2As2 layers. The structure of new compounds are tetragonal with space groups of P4 /nmm for n = 2 and 4 and P4mm for n = 3, which are similar to those of (Fe2As2)(Can+1(Sc,Ti)nOy)[n = 3,4,5] found in our previous study. Compounds with n = 3 and 4 have new crystal structures with 3 and 4 sheets of perovskite layers, respectively, including a rock salt layer in each blocking layer. The a-axis lengths of the three compounds are approximately 3.8 A, which are close to those of FeSe and LiFeAs. (Fe2As2)(Ca6(Al,Ti)4Oy) exhibited bulk superconductivity in magnetization measurement with Tc(onset)~36 K and resistivity drop was observed at ~39 K. (Fe2As2)(Ca5(Al,Ti)3Oy) also showed large diamagnetism at low temperatures. These new compounds indicate considerable rooms are still remaining for new superconductors in layered iron pnictides.
The nature of the pairing state in iron-based superconductors is the subject of much debate. Here we argue that in one material, the stoichiometric iron pnictide KFe2As2, there is overwhelming evidence for a d-wave pairing state, characterized by sym metry-imposed vertical line nodes in the superconducting gap. This evidence is reviewed, with a focus on thermal conductivity and the strong impact of impurity scattering on the critical temperature Tc. We then compare KFe2As2 to Ba0.6K0.4Fe2As2, obtained by Ba substitution, where the pairing symmetry is s-wave and the Tc is ten times higher. The transition from d-wave to s-wave within the same crystal structure provides a rare opportunity to investigate the connection between band structure and pairing mechanism. We also compare KFe2As2 to the nodal iron-based superconductor LaFePO, for which the pairing symmetry is probably not d-wave, but more likely s-wave with accidental line nodes.
While the layered 122 iron arsenide superconductors are highly anisotropic, unconventional, and exhibit several forms of electronic orders that coexist or compete with superconductivity in different regions of their phase diagrams, we find in the abs ence of iron in the structure that the superconducting characteristics of the end member BaPd2As2 are surprisingly conventional. Here we report on complementary measurements of specific heat, magnetic susceptibility, resistivity measurements, Andreev spectroscopy, and synchrotron high pressure x-ray diffraction measurements supplemented with theoretical calculations for BaPd2As2. Its superconducting properties are completely isotropic as demonstrated by the critical fields, which do not depend on the direction of the applied field. Under the application of high pressure, Tc is linearly suppressed, which is the typical behavior of classical phonon-mediated superconductors with some additional effect of a pressure-induced decrease in the electronic density of states and the electron-phonon coupling parameters. Structural changes in the layered BaPd2As2 have been studied by means of angle-dispersive diffraction in a diamond-anvil cell. At 12 GPa and 24.2 GPa we observed pressure induced lattice distortions manifesting as the discontinuity and, hence discontinuity in the Birch-Murnaghan equation of state. The bulk modulus is B0=40(6) GPa below 12 GPa and B0=142(3) GPa below 27.2 GPa.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا