In a recent letter [Phys. Rev. Lett. 105 (2010) 036804] the unoccupied electronic states of single layers of graphene on ruthenium are investigated. Here we comment on the interpretation, which deviates in four points from [J. Phys.: Condens. Matter 22 (2010) 302001] and outline the corresponding consequences.
We monitor the dynamics of hot carriers in InSe by means of two photons photoelectron spectroscopy (2PPE). The electrons excited by photons of 3.12 eV experience a manifold relaxation. First, they thermalize to the electronic states degenerate with t
he $bar M$ valley. Subsequently, the electronic cooling is dictated by Frohlich coupling with phonons of small momentum transfer. Ab-initio calculations predict cooling rates that are in good agreement with the observed dynamics. We argue that electrons accumulating in states degenerate with the $bar M$ valley could travel through a multilayer flake of InSe with lateral size of 1 micrometer. The hot carriers pave a viable route to the realization of below-bandgap photodiodes and Gunn oscillators. Our results indicate that these technologies may find a natural implementation in future devices based on layered chalcogenides.
In this comment we report on two misprints of a classical and still widely used tight-binding table contained in a seminal, 65-years-old paper by Slater and Koster, and suggest the corresponding corrections.
The mechanisms for spin relaxation in semiconductors are reviewed, and the mechanism prevalent in p-doped semiconductors, namely spin relaxation due to the electron-hole exchange interaction, is presented in some depth. It is shown that the solution
of Boltzmann-type kinetic equations allows one to obtain quantitative results for spin relaxation in semiconductors that go beyond the original Bir-Aronov-Pikus relaxation-rate approximation. Experimental results using surface sensitive two-photon photoemission techniques show that the spin relaxation-time of electrons in p-doped GaAs at a semiconductor/metal surface is several times longer than the corresponding bulk spin relaxation-times. A theoretical explanation of these results in terms of the reduced density of holes in the band-bending region at the surface is presented.
Analysis of data presented in the paper -- Unveiling the double-well energy landscape in a ferroelectric layer, by M. Hoffmann, et al., Nature 565, 464 (2019) -- suggesting the claims of lack of hysteresis and s-curve trajectory are unfounded.
Graphene epitaxially grown on Ru(0001) displays a remarkably ordered pattern of hills and valleys in Scanning Tunneling Microscopy (STM) images. To which extent the observed ripples are structural or electronic in origin have been much disputed recen
tly. A combination of ultrahigh resolution STM images and Helium Atom diffraction data shows that i) the graphene lattice is rotated with respect to the lattice of Ru and ii) the structural corrugation as determined from He diffraction is substantially smaller (0.015 nm) than predicted (0.15 nm) or reported from X-Ray Diffraction or Low Energy Electron Diffraction. The electronic corrugation, on the contrary, is strong enough to invert the contrast between hills and valleys above +2.6 V as new, spatially localized electronic states enter the energy window of the STM. The large electronic corrugation results in a nanostructured periodic landscape of electron and holes pockets.