ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic and Geometric Corrugation of Periodically Rippled, Self-nanostructured Graphene Epitaxially Grown on Ru(0001)

172   0   0.0 ( 0 )
 نشر من قبل Amadeo Vazquez de parga L.
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphene epitaxially grown on Ru(0001) displays a remarkably ordered pattern of hills and valleys in Scanning Tunneling Microscopy (STM) images. To which extent the observed ripples are structural or electronic in origin have been much disputed recently. A combination of ultrahigh resolution STM images and Helium Atom diffraction data shows that i) the graphene lattice is rotated with respect to the lattice of Ru and ii) the structural corrugation as determined from He diffraction is substantially smaller (0.015 nm) than predicted (0.15 nm) or reported from X-Ray Diffraction or Low Energy Electron Diffraction. The electronic corrugation, on the contrary, is strong enough to invert the contrast between hills and valleys above +2.6 V as new, spatially localized electronic states enter the energy window of the STM. The large electronic corrugation results in a nanostructured periodic landscape of electron and holes pockets.



قيم البحث

اقرأ أيضاً

156 - Yande Que , Wende Xiao , Hui Chen 2017
The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(000 1) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- and ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.
168 - Jinhai Mao , Li Huang , Yi Pan 2011
We develop a strategy for graphene growth on Ru(0001) followed by silicon-layer intercalation that not only weakens the interaction of graphene with the metal substrate but also retains its superlative properties. This G/Si/Ru architecture, produced by silicon-layer intercalation approach (SIA), was characterized by scanning tunneling microscopy/spectroscopy and angle resolved electron photoemission spectroscopy. These experiments show high structural and electronic qualities of this new composite. The SIA allows for an atomic control of the distance between the graphene and the metal substrate that can be used as a top gate. Our results show potential for the next generation of graphene-based materials with tailored properties.
Graphene, a thinnest material in the world, can form moire structures on different substrates, including graphite, h-BN, or metal surfaces. In such systems the structure of graphene, i. e. its corrugation, as well as its electronic and elastic proper ties are defined by the combination of the system geometry and local interaction strength at the interface. The corrugation in such structures on metals is heavily extracted from diffraction or local probe microscopy experiments and can be obtained only via comparison with theoretical data, which usually simulate the experimental findings. Here we show that graphene corrugation on metals can be measured directly employing atomic force spectroscopy and obtained value coincides with state-of-the-art theoretical results. We also address the elastic reaction of the formed graphene nanodoms on the indentation process by the scanning tip that is important for the modeling and fabrication of graphene-based nanoresonators on the nanoscale.
By combining angle-resolved photoemission spectroscopy and scanning tunneling microscopy we reveal the structural and electronic properties of multilayer graphene on Ru(0001). We prove that large ethylene exposure allows to synthesize two distinct ph ases of bilayer graphene with different properties. The first phase has Bernal AB stacking with respect to the first graphene layer, displays weak vertical interaction and electron doping. The long-range ordered moire pattern modulates the crystal potential and induces replicas of the Dirac cone and minigaps. The second phase has AA stacking sequence with respect to the first layer, displays weak structural and electronic modulation and p-doping. The linearly dispersing Dirac state reveals the nearly-freestanding character of this novel second layer phase.
293 - Y. Pan , N. Jiang , J.T. Sun 2007
We demonstrate a method for synthesizing large scale single layer graphene by thermal annealing of ruthenium single crystal containing carbon. Low energy electron diffraction indicates the graphene grows to as large as millimeter dimensions with good long-range order, and scanning tunneling microscope shows perfect crystallinity. Analysis of Moire pattern augmented with first-principles calculations shows the graphene layer is incommensurate with the underlying Ru(0001) surface forming a N by N superlattice with an average lattice strain of ~ +0.81%. Our findings offer an effective method for producing high quality single crystalline graphene for fundamental research and large-scale graphene wafer for device fabrication and integration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا